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Abstract

We derive the steady-state performance of a common class of adaptive filters for multiple access interference (MAI)

reduction in code division multiple access (CDMA) systems. The adaptive filters under study utilize estimates of the desired

user’s amplitude and are divided into three groups of least-mean-square (LMS) algorithms differing by the choice of the

normalization factor. The steady-state performance is deduced from energy-conservation relations that include a possibly

erroneous estimate of the desired user’s amplitude. The analyses show that blind algorithms using information about the

desired user’s amplitude achieve similar performance to that of nonblind algorithms. In addition, geometric considerations

reveal the conditions under which the choice of the normalization factor is expected to have great impact on the

convergence properties of the algorithms. Numerical simulations show good agreement with theory.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In direct sequence/code division multiple access
systems (DS/CDMA), multiple users share the same
channel at the same time. Hence, at the receiver the
detection of the transmitted symbols of a desired
user is strongly affected by the interference origi-
nated from the other users in the system. This
interference is known as multiple access interference
(MAI). Without proper mitigation, this MAI causes
severe performance degradation in the detection of
the transmitted information.

In multiuser systems, a receiver that achieves the
minimum bit error rate (BER) generally demands
high computational complexity [1]. Therefore, linear
adaptive filters with low computational complexity
have been introduced to mitigate MAI [2]. Linear
adaptive filters try to approximate a filter that
minimizes (or maximizes) a mathematically tract-
able cost function closely related to the BER.
Usually, these adaptive filters track the filter
maximizing the signal-to-interference-noise ratio
(SINR) [2–13], and the main difference between
them lies in the choice of the adaptive algorithm.

In particular, a great deal of effort has been
devoted to the study of blind linear receivers based
on the recursive least-squares (RLS) and least-
mean-square (LMS) algorithms. RLS-based recei-
vers show good convergence speed [10], but they
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demand higher computational complexity than
LMS-based receivers and often suffer from numer-
ical instabilities [8] caused by the inherent matrix
inversion and possible model mismatch. Moreover,
for this particular application, conventional fast
versions with linear complexity of the RLS algo-
rithm are hard to be applied because there is
no time-index-shifting property of the input data
[10]. Furthermore, in relatively fast time-varying
scenarios, LMS-based receivers can outperform
RLS-based receivers [13] because the tracking
behavior of the LMS algorithm is usually superior
to that of the RLS algorithm in nonstationary
environments [14]. In this study, the focus is on
LMS-based receivers.

When a training sequence is necessary for the
filter adaptation in a LMS-based receiver, the LMS
algorithm is said to be nonblind; otherwise, it is said
to be blind. Blind LMS algorithms are preferable
because the overhead imposed by training sequences
is not present, so the throughput of the system is
potentially higher. They are usually obtained by
restricting the adaptive filter to satisfy a constraint
determined by the desired user’s signature. A
celebrated blind LMS algorithm for MAI mitiga-
tion has been proposed in [2]. Unfortunately, the
steady-state performance achieved with this ap-
proach is much worse than the performance
achieved with nonblind algorithms, especially when
the level of background noise is small. This
performance difference between blind and nonblind
algorithms can be reduced if estimates of the desired
user’s amplitude and transmitted symbol are utilized
effectively in the blind algorithms [4,9,12,15].

We can further divide LMS algorithms into non-
normalized algorithms [2,9] and normalized algo-
rithms [4,5,9,11–13]. Normalized LMS algorithms
are frequently used because they are potentially
faster than non-normalized LMS algorithms for
both uncorrelated and correlated input data [16].
The work in [9] introduces a normalization factor
that reduces the sensitivity of LMS algorithms to
changes in the number of users and/or the signal-to-
noise ratio (SNR). In [4] the normalization factor
has been derived from projections onto closed
nonconvex sets. By considering geometric properties
of projections onto closed convex sets, [5,12,15]
have proposed a normalization factor aiming at fast
convergence speed.

In this study, we deduce closed-form expressions
for the steady-state performance of constrained
normalized LMS algorithms. The closed-form
expressions are derived by including the possible
information about the desired user’s amplitude into
energy-conservation relations [17–19]. More pre-
cisely, we focus on the steady-state performance of
the algorithms introduced in [4,5,9,12]. These
algorithms are examples of a more general class of
receivers presented in [13], which in turn is based on
the adaptive projected subgradient method [20]. For
simplicity, we divide the algorithms into three
different groups according to their normalization
factors (cf. Table 1):

� Group I [4]: the OPM-based gradient projection
(OPM-GP) algorithm, the generalized projection
(GP) algorithm, and the space alternating gen-
eralized projection (SAGP) algorithm;
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Table 1

Characterization of the adaptive filters under study

Group Algorithm a ~b1½i� gðr½i�Þ

I GP [4] A1 sgnðhTi�1r½i�Þ kr½i�k2

I SAGP [4] ~A1 sgnðhTi�1r½i�Þ kr½i�k2

I OPM-GP [4] 0 - kr½i�k2

II Modified GP A1 sgnðhTi�1r½i�Þ r½i�TPr½i�

II Modified SAGP [12] ~A1 sgnðhTi�1r½i�Þ r½i�TPr½i�

II Modified OPM-GP [5] 0 – r½i�TPr½i�

III BLMS (normalized)[9] 0 – b½i� ¼ ð1� kÞb½i � 1� þ kkr½i�k2,
b½0� ¼ kr½0�k2; 0oko1

III CLMS-AE (normalized)[9] ~A1 b1½i� b½i� ¼ ð1� kÞb½i � 1� þ kkr½i�k2,
b½0� ¼ kr½0�k2; 0oko1

III DD-CLMS-AE (normalized)[9] ~A1 sgnðhTi�1r½i�Þ b½i� ¼ ð1� kÞb½i � 1� þ kkr½i�k2,
b½0� ¼ kr½0�k2; 0oko1
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