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a b s t r a c t

An innovative procedure for characterizing thermo-mechanical behavior of superalloy using the Eigenfunc-

tion Virtual Fields Method (EVFM) was proposed. First, the principle of EVFM for thermo-mechanical con-

stants identification was developed based on the principal components analysis. Then, the strain fields were

extracted from finite element (FE) simulation of a superalloy plate with a circular hole under uniaxial ten-

sion and uniform temperature increment. In addition, the virtual fields were constructed using the eigen-

vectors of augmented strain matrix. Finally, the thermo-mechanical constants were inversed from the strain

fields, and the effect of mesh size and noise on the inversion results was analyzed. The results show that the

thermo-mechanical constants of superalloy inversed from EVFM using these eigenvectors as virtual fields are

in excellent agreement with the true values.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Superalloy materials are widely used in aviation and aerospace

fields as engine materials due to its excellent high temperature

thermo-mechanical behavior [1,2]. However, how to characterize the

thermo-mechanical constants of superalloy materials correctly, accu-

rately and simply is an important and difficult problem. Virtual Fields

Method (VFM), which was proposed by Grédiac and Pierron [3,4],

provides an effective tool for high temperature parameter identifi-

cation of materials. VFM brings the advantage of full-field and non-

contact of optical measurement into play.

VFM has been commonly applied in many areas since it was pro-

posed. Among these applications, the elastic stiffness identification

is one of the most interested fields. Grédiac et al. applied VFM to the

identification of hyperelastic parameters [5], elasto-plastic constitu-

tive parameters [6], bending rigidities of anisotropic plates [7]. Pier-

ron et al. extended the virtual fields method to elasto-plastic mate-

rial identification with cyclic loads and kinematic hardening [8] and

identification of elasto-visco-plastic parameters [9]. Rahmani et al.

used VFM to mechanical properties identification of 3D particulate

composites [10] and proposed a Regularized Virtual Fields Method

(RVFM) to characterize mechanical properties of composite materi-

als [11]. Xie et al. applied VFM to elastic stiffness identification of
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composite materials [12] and 3D printing material [13]. Ma et al.

[14] used VFM to inverse and decouple thermo-mechanical deforma-

tion of anisotropic materials under high-temperature environments.

Furthermore, Gao and Shang [15] proposed a Deformation-Pattern-

based Digital Image Correlation (DPDIC) method to measure directly

residual stresses by digital image correlation using hole drilling. The

deformation pattern that was governed by the residual stresses was

used to affine transform the image captured after the object was de-

formed. Liu and Gao [16] extended DPDIC to measure coefficient of

thermal expansion (CTE) of film, and the results of CTEs from DPDIC

and conventional DIC methods were compared with the actual CTE,

showing an improved accuracy.

Recently, Subramanian et al. [17] proposed an Eigenfunction Vir-

tual Fields Method (EVFM), which systematically identifies virtual

fields by performing a principal component analysis (PCA) of the

strain field measured from experiments. The virtual strain compo-

nents to be used in VFM are then chosen to be the eigenfunctions.

In addition to being a physically meaningful set of virtual fields, such

a choice exploits the orthogonality of the computed eigenfunctions

while simultaneously eliminating computation of a large number of

coefficients that define the virtual fields in prior approaches. They ap-

plied EVFM to homogeneous linear elastic property evaluation [17],

computation of elastic constants of functionally graded materials [18]

and identification of orthotropic elastic constants [19,20].

In the present work, the EVFM was extended to thermo-

mechanical parameters identification of superalloy materials un-

der high temperature environment. The principle of EVFM for
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thermo-mechanical parameters identification was presented firstly.

Then, a finite element simulation was carried out on a superalloy

plate with a circular hole under uniaxial tension and uniform temper-

ature increment. The eigenfunctions calculated from the strain fields

were selected as virtual fields to inverse thermo-mechanical parame-

ters. Finally, the effect of mesh size and noise on the inversion results

was analyzed.

2. Principle of EVFM

2.1. Computation of eigenfunctions of strain fields

EVFM is based on the eigenfunctions of strain field, and the strain

field usually calculated from full-field optical method, such as digital

image correlation, on a grid of m×n points. Two augmented matrices

Er and Ec of sizes 3m×n and m×3n respectively are constructed from

the strain component grids as follows [17]:

Er =
[

E1

E2

E3

]
; Ec =

[
E1 E2 E3

]
(1)

where E1, E2 and E3 are the strain components on the grid points.

Singular Value Decomposition (SVD) is performed on the Er and Ec,

and the eigenfunctions are obtained by Principal Component Analysis

(PCA). The decompositions are

Er
(3m×n) = Lr

(3m×3m)S
r
(3m×n)(Rr)

T
(n×n) (2)

Ec
(m×3n) = Lc

(m×m)S
c
(m×3n)(Rc)

T
(3n×3n) (3)

where the columns of Lr and Lc contain the left eigenvectors of Er and

Ec; Sr and Sc are diagonal matrices that contain the singular values of

Er and Ec; the columns of Rr and Rc contain the right eigenvectors of

Er and Ec, respectively. A significant advantage of this decomposition

is that each group of eigenvectors is a complete orthonormal basis;

therefore, the right eigenvectors are orthonormal basis for the row

space of each augmented matrix, as well as the left eigenvectors are

orthonormal basis for the column space [17].

It is proved that full-field strain data are highly redundant and

only a small number (p) eigenvectors are dominant. Thus, it is ade-

quate to reconstruct the strain matrices in terms of the p-dimensional

subspace of the row and column spaces spanned by these p dominant

left and right eigenvectors. If E
r

1 is the reconstructed matrix of strain

values E1 using the p right eigenvectors of Er, then

E
r

1 = A
r

1

(
R

r
)T

= E1R
r
(

R
r
)T

(4)

where R
r

is the n×p matrix whose columns contain the p right domi-

nant eigenvectors of Er; and A
r

1 = E1R
r

is an m×p matrix, which con-

tains the rows of E1 along the columns of R
r
. It is evident that the kth

row (E
r

1)(k,−) of E
r

1 can be obtained as(
E

r

1

)(k,−)

=
(

A
r

1

)(k,−)(
R

r
)T

(5)

In the same way, E
c

1 is the reconstructed matrix of E1 from the p

dominant left eigenvectors of Ec, which is given by

E
c

1 = L
c
(

A
c

1

)T

= L
c
(

L
c
)T

E1 (6)

where L
c

is the m×p matrix whose columns contain the p left eigen-

vectors of Ec; and A
c

1 = (E1)T L
c

is an p×n matrix, which contains the

columns of E1 along the columns of L
c
. The other two strain compo-

nent matrices are reconstructed similarly.

Fig. 1. Superalloy materials of any shape under in-plane thermo-mechanical loading.

2.2. EVFM for characterizing thermo-mechanical behavior of superalloy

As shown in Fig. 1, a solid with constant thickness of any shape

subjected to in-plane thermo-mechanical loading. Here, V is the vol-

ume occupied by the solid of interest, and S is the exterior surface of

the solid. Su and Sf are the displacement boundary and the loading

boundary of the external surface area, respectively. ui (i = 1,2) is the

displacement over the displacement boundary. Ti (i = 1,2) is the force

per unit area over the loading boundary. Thus, the governing equation

of virtual work can be expressed as [3,14]∫
V

σiε
∗
i dV =

∫
s f

Tiu
∗
i dS (7)

where u∗
i
(i=1,2) is any kinematically admissible virtual displacement

field; ε∗
i
(i=1,2,12) is the virtual strain; σi(i=1,2,12) is the stress.

Under the thermo-mechanical loading conditions, the stress-

strain relations of isotropic superalloy materials can be expressed as

follows:(
σ1

σ2

σ12

)
=

[
Q1 Q2 0
Q2 Q1 0
0 0 Q12

](
ε1 − α�T
ε2 − α�T

ε12

)
(8)

where Q1 = E
1−μ2 , Q2 = μQ1 = Eμ

1−μ2 , Q12 = Q1−Q2
2 = G = E

2(1+μ)
are

the coefficients of the stiffness matrix. α is the thermal expansion co-

efficients of the isotropic superalloy materials. εi(i=1,2,12) is the true

strain field. �T (1, 2) is the temperature increment in the coordinate

(1,2). Then, Eq. (7) can be expressed as

h
∫
S

ε∗
1[Q1(ε1 − α�T ) + Q2(ε2 − α�T )]dS+

h
∫
S

ε∗
2[Q2(ε1 − α�T ) + Q1(ε2 − α�T )]dS+

h
∫
S

ε∗
12[Q12ε12]dS = ∫

S f

(
T1u∗

1 + T2u∗
2

)
dS

(9)

where h is the thickness of the solid.

Eq. (9) can be simplified as

Eh
1−μ2

∫
S

ε∗
1[(ε1 + με2) − (1 + μ)α�T ]dS+

Eh
1−μ2

∫
S

ε∗
2[(με1 + ε2) − (1 + μ)α�T ]dS+

Eh
2(1+μ)

∫
S

ε∗
12ε12dS = ∫

S f

(
T1u∗

1 + T2u∗
2

)
dS

(10)

2.3. Finite element simulation

Since the primary objective of this paper is to demonstrate the ac-

curacy of EVFM for thermo-mechanical properties, strain fields from
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