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Abstract

We present a novel suboptimal filtering algorithm addressing estimation problems that arise in mixed continuous–dis-

crete linear time-varying systems with stochastic parametric uncertainties. The suboptimal state estimate is formed by

summing of local Kalman estimates with weights depending only on time instants tk. In contrast to optimal weights, the

suboptimal weights do not depend on current measurements, and thus the proposed filter is of a low-complexity and it can

easily be implemented in real-time. High accuracy and efficiency of the suboptimal filter are demonstrated on the damper

harmonic oscillator motion and the vehicle motion constrained to a plane.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

We consider a linear system described by the
stochastic differential equation

_xt ¼ F tðyÞxt þ GtðyÞvt; tX0, (1)

where xt 2 Rn is the state, vt 2 Rq is a zero-mean
Gaussian white noise with covariance Eðvtv

T
s Þ ¼

Qtdðt� sÞ, and Ft 2 Rn�n, Gt 2 Rn�q, and Qt 2

Rq�q.
Discrete linear measurements are taken at time

instants tk:

ytk
¼ Htk

ðyÞxtk
þ wtk

,

k ¼ 1; 2; . . . ; tkþ14tkXt0 ¼ 0, ð2Þ

where ytk
2 Rm is the measurement Htk

2 Rn�m, and
fwtk
2 Rm; k ¼ 1; 2; . . .g is a zero-mean white Gaus-

sian sequence, wtk
�Nð0;Rtk

ðyÞÞ. The distribution of
the initial state x0 is Gaussian, x0�Nðx̄0ðyÞ;P0ðyÞÞ,
and x0, vt, and fwtk

g are assumed independent. The
sample times ftkg are scheduled and completely
known in advance. In general, the partition of the
time instants ntk ¼ tk � tk�1 is an arbitrary.

In addition, it is assumed that the matrices FtðyÞ,
GtðyÞ, QtðyÞ, Htk

ðyÞ, Rtk
ðyÞ, P0ðyÞ and the initial

mean x̄0ðyÞ include the unknown parameter y 2 Rr,
which takes only a finite set of values

y 2 fy1; . . . ; yNg. (3)

This finite set might be a result of discretizing a
continuous parameter space [1,2]. The parameter y
is time-invariant, that is at the starting point t ¼ 0
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the parameter is settled, y ¼ yi, and it cannot
change during time progress t40.

A fundamental problem associated with such
systems is estimation of the state xt from the noisy
measurements yt

0 ¼ fyts
: 0ptsptg.

Many approaches are available for the adaptation
of systems. Most identification approaches (see, for
example, [1–7]) may be applied to construct an
adaptive mechanism. Among existing methods, we
are particularly interested in the partitioned adap-
tive approach that is mathematically based on the
Bayesian estimation theory, since it is useful not
only for identifying noise statistics but also for
estimating unknown system parameters and states,
which is sometimes called structure adaptation. In
structure adaptation, two methods are primarily
used for the system (1)–(3). The first method is
based on the extended Kalman filter (EKF) [8–12],
and the second one is based on the standard
Kalman filter and the Lainiotis partition theorem
[1–3]. Note that the second method is often called
the adaptive Kalman filtering (AKF). Both filters
EKF and AKF are based on the Bayesian approach
in which the unknown parameter y is assumed to be
random with a prior known probability pðyÞ. The
EKF represents a suboptimal nonlinear filtering
algorithm to estimate the composite state vector
½xty�T that contains y as its component. However, it

is difficult to estimate the effect of nonlinear
approximations made in the suboptimal realization
of EKF [8–12].

The AKF separates the filtering process xt from
identification of the unknown parameter y [1–5]. In
this paper we are interested in such an AKF that
constitutes a partitioning of the original nonlinear
filter into the bank of much simpler N local Kalman
filters where each local filter uses its own system
model (1), (2) matched to each possible parameter
value y ¼ yi, i ¼ 1; . . . ;N. This AKF is also referred
to multiple model adaptive estimation [13–18]. The
overall estimate of state of this AKF is given by a
weighted sum of local Kalman estimates, thus it can
be implemented on a set of parallel processors due
to its inherent parallel structure. However, the
optimal AKF’s weights represent the conditional
probabilities of the specific parameter values pðyijy

t
0Þ

which depend on current observations yt
0 and it is

rather difficult to implement the AKF in real-time
for high-dimension of state vector and large number
of local Kalman estimates (filters).

In this paper, discrete filtering of continuous-time
linear systems with uncertainties is considered. We
extend the well-known optimal discrete and con-
tinuous AKFs [1–5] to the mixed continuous–dis-
crete linear systems with parametric uncertainties.
But the main objective of the present paper is to give
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Nomenclature

Rn Euclidean space of dimension n

Rn�m space of n�m real matrices
y unknown parameter (vector), y 2 Rr

yi value of parameter y, y ¼ yi, i ¼ 1; . . . ;N
N total number of values of parameter y ¼

fy; . . . ; yNg

xt ¼ xtðyÞ state vector at time instant t depend-
ing on y

x
ðiÞ
t ¼ xtðyiÞ state vector xt ¼ xtðyÞ at the value of

parameter y ¼ yi

ytk
measurement vector at time instant tk

yt
0 collection of all measurements up to time

t

pðyÞ prior probability of y
pðyjyt

0Þ a posteriori probability of y given yt
0

vt system noise vector at time instant t, vt 2

Rq

wtk
measurement noise vector at time instant
tk, wtk

2 Rm

Htk
ðyÞ measurement matrix at time instant tk

depending on parameter y, Htk
ðyÞ 2

Rn�m

FtðyÞ system matrix at time instant t depending
on parameter y, F tðyÞ 2 Rn�n

QtðyÞ covariance of system noise depending on
parameter y, Qt 2 R

q�q

Rtk
ðyÞ covariance of measurement noise de-

pending on parameter y, Rtk
2 Rm�m

x̂
opt
t , P

opt
t optimal mean-square estimate of state

xt given yt
0 and corresponding covariance

x̂sub
t , Psub

t suboptimal (fusion) estimate of state xt

given yt
0 and corresponding covariance

x̂
ðiÞ
t , P

ðiÞ
t optimal local estimate of state x

ðiÞ
t and

corresponding covariance
x̂
ðiÞ�

tk
, P
ðiÞ�

tk
predicted local estimate of state x

ðiÞ
t at

time tk and corresponding covariance
Nðm;PÞ multidimensional normal pdf with mean

m and P covariance
dij Kronecker delta function
dðt� sÞ Dirac delta function
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