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a b s t r a c t

Numerical models for computing low-frequency electromagnetic fields can contain spatial 2D finite ele-
ments, which are numerically most demanding due to problem of singularity. In this paper, an advanced
time-harmonic quasistatic surface charge simulation method for computation of scalar electric potential
and electric field intensity distribution is presented. Subparametric spatial 2D finite elements with an
arbitrary number of nodes for description of surface charge density distribution are developed. The
problem of singularity that occurs in the double 2D integration over these elements is solved using an
originally developed advanced numerical integration based on 2D Gaussian quadrature. Self and mutual
coefficients of spatial 2D finite element nodes are numerically computed and included in the system of
linear equations for surface charge density distribution computation. The accuracy of the computer pro-
gram, based on the presented model, is shown in the chosen numerical example with known analytical
solution. Numerical model and advanced integration presented herein could be easily extended to
non-homogeneous regions and multilayer problems using the image method.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

High voltage air-insulated switchyards, substations and power
lines feature complex three-dimensional (3D) layout of metallic
conductors. Large time-harmonic currents and charges cause
low-frequency (50/60 Hz) electromagnetic fields, wherein electric
field intensity in their vicinity can exceed reference values
prescribed by ICNIRP guidelines [1].

In numerical models for computing low-frequency electromag-
netic fields, the problem can be considered as quasistatic [2–5].
Quasistatic fields vary slowly with time and therefore, attenuation
and phase shift of these fields can be neglected. Numerical
algorithms for computing electromagnetic fields in electric power
substations are 3D algorithms [5–9]. Numerical algorithms for
computing overhead power line electromagnetic fields are mostly
two-dimensional (2D) [10,11], although in a certain number of real
cases more sophisticated 3D algorithms can be taken into account
[12,13].

Applied methodologies for computing low-frequency electro-
magnetic fields range from the method of moments (MOM) [14],
finite-difference time-domain method (FDTD) [15,16], finite

element method (FEM) [17], boundary element method (BEM)
[18], charge simulation method (CSM) [19,20], surface charge sim-
ulation method (SCSM) [21], to name a few. Theoretical basis of
each method, its advantages and limitations in comparison with
other solution techniques are well-known [22].

In a wider time-harmonic quasistatic surface charge method for
computing low-frequency electromagnetic fields of power lines
and substations [23], thin-wire cylindrical segments of active and
passive conductors, conductive metallic spheres and spatial 2D
finite elements are included and all of these components are
capacitively coupled. The foundation of the developed method is
application of finite element technique to an integral equation
formulation in the frequency domain. In this paper, time-harmonic
quasistatic charge simulation method [23] is reduced to surface
charge simulation method, i.e. to use of spatial 2D subparametric
finite elements. Spatial 2D finite elements are numerically most
demanding due to problem of singularity which occurs in the dou-
ble 2D integration when they are taken into consideration [24,25].
Therefore, in this paper, discussion is limited only to these
elements. Hence, subparametric spatial 2D finite elements, with
an arbitrary number of nodes for a description of surface charge
density distribution, are developed. Expressions for self and
mutual coefficients of these spatial 2D finite element nodes are
derived using the Galerkin–Bubnov method, which gives symmet-
ric system of linear equations. The problem of singularity that
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occurs in the double 2D integration over spatial 2D finite elements
is successfully solved using originally developed advanced algo-
rithm for double 2D numerical integration based on Gaussian
quadrature. In the numerical example, due to simplicity, existence
of analytical solutions and comparability, equipotential circular
metal plate in a homogeneous unbounded dielectric medium
(air) is chosen. It is therefore a good example to verify the accuracy
of the algorithm developed in this paper, focusing on the accuracy
of the advanced double 2D numerical integration over spatial 2D
finite elements. Presented algorithm is developed for AC fields,
but can be easily reduced to DC fields if phasors of all input data
have phase angles equal to zero.

2. Subparametric spatial 2D finite elements

In the finite element terminology, some conductive passive
parts of electrical substations and towers of overhead power lines
can be described by spatial 2D finite elements. In Fig. 1, spatial 2D
finite element with 9 nodes for geometry mapping and 25 nodes
for numerical approximation of the surface charge density dis-
tribution is shown.

In this model, for geometry mapping of spatial 2D finite ele-
ment, a quadrilateral reference 2D finite element with four, eight
or nine nodes can be used. There are no limitations for the geo-
metrical shape, which can be arbitrary, and only suitable number
of nodes has to be chosen. In the Fig. 2, quadrilateral reference
2D finite element with eight nodes for geometry mapping is
shown. Furthermore, the surface charge density distribution over
the quadrilateral reference 2D finite element is described by linear
combination of shape functions joined to the element nodes.
Number of nodes is arbitrary and coefficients of the linear
combination are potentials of element nodes. In the developed
model, there are more nodes for approximation of the surface
charge density distribution than nodes for geometry mapping, thus
the spatial 2D finite elements are subparametric.

Mapping functions of the quadrilateral reference 2D finite ele-
ment with four, eight or nine nodes are equal to product of 1D
Lagrange polynomials or serendipity polynomials for each coordi-
nate axis in the local coordinate system (u, v) [26,27]. Partial
derivatives of these functions along local axes can be obtained
easily. In the special case, quadrilateral reference 2D finite element
can be mapped into a triangular finite element (Fig. 3).

Numerical approximation of the surface charge density dis-
tribution over a reference 2D finite element can be written as:

�r ¼
XNC

q¼1

Nq � �rq ð1Þ

where NC is a total number of the reference 2D finite element local
nodes, Nq is the shape function joined to the q-th local node of the
reference 2D finite element and �rq is the phasor of the surface
charge density of the q-th local node.

Shape function joined to the q-th local node can be written as:

Nq ¼
YNU
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u� uk

ucu � uk
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0
@
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A; q ¼ 1;2; . . . ;NC

q ¼ ðcv � 1Þ � NU þ cu; cu ¼ 1; . . . ;NU; cv ¼ 1; . . . ;NV

ð2Þ

where NU is a total number of nodes along the local u-axis, NV is a
total number of nodes along the local v-axis, u e [�1, 1] and
v e [�1, 1] are local coordinates of the reference 2D finite element,
whereas uk and vk denote local coordinates of the k-th node along
u- and v-axes, respectively.

Hence, the total number of nodes of a reference 2D finite ele-
ment for numerical approximation of the surface charge density
distribution is given by:

NC ¼ NU � NV ð3Þ

Quadrilateral reference 2D finite element with 5 nodes along local
axes u and v, i.e. with total 25 local nodes for numerical approx-
imation of the surface charge density distribution is shown in Fig. 4.

Using the Galerkin–Bubnov method, which is a special case of
weighted residual method, symmetric system of linear equations
for computation of surface charge density of global nodes can be
obtained from the following expression:ZZ

Si
ð �u� �UiÞ � Ni

p � dSi ¼ 0; i ¼ 1; :::;NP; p ¼ 1; :::;NCi ð4Þ

where �u is a phasor of the computed value of the scalar electric
potential, Si is a surface of the i-th spatial 2D finite element, �Ui is
a phasor of the prescribed potential on i-th spatial 2D finite element

which is assumed to be constant, Ni
p is a shape function joined to

the p-th local node of the i-th spatial 2D finite element, NP is a total
number of the spatial 2D finite elements and NCi is a total number
of local nodes of the i-th spatial 2D finite element.

Continuity of the surface charge density at the spatial 2D finite
element boundaries is not required. Consequently, local nodes of
different spatial 2D finite elements cannot be joined to the same
global node. For each subparametric spatial 2D finite element, glo-
bal coordinates of local nodes for geometry mapping are inputFig. 1. Subparametric spatial 2D finite element in local coordinate system.

Fig. 2. Quadrilateral reference finite element with 8 nodes for geometry mapping.

Fig. 3. Subparametric triangular spatial 2D finite element in local coordinate
system.
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