
Acceleration of boundary element method by explicit vectorization

Michal Merta ⇑, Jan Zapletal
IT4Innovations National Supercomputing Center, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic
Dept. of Applied Mathematics, VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic

a r t i c l e i n f o

Article history:
Received 23 February 2015
Received in revised form 7 April 2015
Accepted 11 April 2015

Keywords:
Boundary element method
Sound scattering
Helmholtz equation
Vectorization
SIMD
OpenMP parallelization

a b s t r a c t

Although parallelization of computationally intensive algorithms has become a standard with the scien-
tific community, the possibility of in-core vectorization is often overlooked. With the development of
modern HPC architectures, however, neglecting such programming techniques may lead to inefficient
code hardly utilizing the theoretical performance of nowadays CPUs. The presented paper reports on
explicit vectorization for quadratures stemming from the Galerkin formulation of boundary integral
equations in 3D. To deal with the singular integral kernels, two common approaches including the
semi-analytic and fully numerical schemes are used. We exploit modern SIMD (Single Instruction
Multiple Data) instruction sets to speed up the assembly of system matrices based on both of these reg-
ularization techniques. The efficiency of the code is further increased by standard shared-memory paral-
lelization techniques and is demonstrated on a set of numerical experiments.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The boundary element method (BEM) is a counterpart to the
finite element method (FEM) suitable for the solution of partial dif-
ferential equations which can be formulated in the form of bound-
ary integral equations. Since BEM reduces the given problem to the
boundary of a computational domain, it is especially suitable for
problems stated in unbounded domains, such as acoustic or elec-
tromagnetic wave scattering, or shape optimization.

System matrices arising from the classical BEM are dense and
the method has quadratic computational and memory complexity
with respect to the number of surface elements. Moreover, special
quadrature methods are needed due to the singularities in the ker-
nels of the boundary integrals [1,2], which further contribute to
computational demands of the method. Several fast BEM
approaches can be employed to reduce computational and mem-
ory requirements to almost linear. The common methods are based
on the decomposition of the surface mesh into clusters and subse-
quent low rank approximation of matrix blocks corresponding to
admissible pairs of clusters. Nonadmissible blocks are assembled
in the standard way as full rank matrices. The fast multipole
method (FMM) is based on the approximation of the system matri-
ces by the multipole series expansion [3–5], whereas the adaptive

cross approximation (ACA) assembles the low rank approximation
from an algebraic point of view [6,2].

Regardless the above mentioned approximation techniques,
there is still a need for an efficient assembly of nonadmissible
matrix blocks or a certain number of rows and columns of admis-
sible blocks in the case of ACA. Since these blocks are usually too
small to be distributed among computational nodes by MPI, an
OpenMP parallelization of the assembly is an obvious choice. In
this paper, we discuss further acceleration of the process by means
of vectorization of the quadrature over pairs of surface elements.

With new SIMD instruction sets available in modern processors
the usage of vectorization becomes more important in scientific
computation. Neglecting it may lead to inefficient code not capable
of reaching the theoretical performance of current CPUs. The SSE
instruction set introduced by Intel in 1999 provided eight
128-bit registers and enabled concurrent operations on four
32-bit single-precision floating point numbers. Its successors,
SSE2–SSE4, extended this capability to support SIMD operations
on two 64-bit double-precision floating point operands while
incrementally adding more instructions. The AVX instruction set
supported by Intel processors since 2011 extends the registers
length from 128 bits to 256 bits and introduces a three-operand
SIMD instruction format. Its capabilities are further extended by
AVX2. The AVX-512 should provide registers with 512-bit length
allowing for concurrent operation on eight 64-bit double precision
numbers. Its support is announced for Intel’s Knights Landing
processor available in 2015 and for Intel’s Skylake microprocessor
architecture [7].

http://dx.doi.org/10.1016/j.advengsoft.2015.04.008
0965-9978/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: IT4Innovations National Supercomputing Center,
VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava, Czech Republic.

E-mail addresses: michal.merta@vsb.cz (M. Merta), jan.zapletal@vsb.cz
(J. Zapletal).

Advances in Engineering Software 86 (2015) 70–79

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2015.04.008&domain=pdf
http://dx.doi.org/10.1016/j.advengsoft.2015.04.008
mailto:michal.merta@vsb.cz
mailto:jan.zapletal@vsb.cz
http://dx.doi.org/10.1016/j.advengsoft.2015.04.008
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


To use the vector instructions the existing scalar code usually
has to be modified. While the automatic loop vectorization pro-
vided by the compiler is not capable of vectorizing more complex
loops often occurring in scientific codes, exploiting the supported
intrinsic functions may lead to a confusing and hardly maintain-
able code. One of the possibilities avoiding these issues is to use
a higher level library, such as VML from Intel’s Math Kernel
Library [8], VDT [9], or the Vc library [10], which is the main focus
of this paper. The library provides a high level wrapper on SIMD
intrinsics and enables explicit vectorization of C++ code. It is porta-
ble among various compilers and SIMD instruction sets and
enables easy vectorization without the need for a major redesign
of the existing object oriented C++ code.

The topic of the vectorization of the BEM computation has been
presented in several publications. In [11] an example of automatic
loop vectorization of Fortran boundary element computation is pro-
vided. The original routines are manually altered using techniques
such as loop unrolling and loop reordering in order to enable the
compiler to employ SIMD instructions. Although a reasonable
speedup with respect to the non-vectorized version is obtained,
modifications lead to a significantly more complex code. The inter-
ested reader may also consult [12] for a comprehensive presentation
of BEM quadrature vectorization. The author provides a general
overview of the SIMD parallelism, compares two approaches to han-
dling data during the computation (inter- and intra-register opera-
tions), and presents results of numerical experiments with a code
vectorized using intrinsic functions. However, the work does not
discuss the treatment of singularities in the related surface integrals,
which is one of the crucial tasks of BEM computations.

The structure of the paper is as follows. In the next section we
provide a model problem on which we demonstrate the boundary
element workflow. In Section 3, a short overview of our BEM
library is provided, Section 4 discusses the vectorization of the
computationally most demanding parts of the code. Finally, we
provide results of numerical experiments and conclude.

2. Boundary element method for sound-hard scattering

In this section we present the model problem under considera-
tion, derive the corresponding boundary integral equations and
their Galerkin discretization.

2.1. Helmholtz boundary integral equation

We consider a time-harmonic scattering problem with a sound-
soft obstacle modelled by a bounded Lipschitz domain X � R3. The
incident wave is of the form ui :¼ eijhx;di with the imaginary unit i,
the wave number j 2 Rþ, and a unit direction vector d. The wave
us scattered from X satisfies the exterior Dirichlet boundary value
problem for the Helmholtz equation [13,2]

Dus þ j2us ¼ 0 in Xext :¼ R3 nX;

us ¼ g on @X;

rusðxÞ; x
kxk

D E
� ijusðxÞ

��� ��� ¼ O 1
kxk2

� �
for kxk ! 1:

8>><
>>: ð1Þ

The total wave field around the obstacle is given by ut :¼ ui þ us.
The Dirichlet condition in (1) is given by the negative of the incident
wave g :¼ �ui. Thus, the total wave field ut vanishes on @X. The
Sommerfeld radiation condition ensures uniqueness of the solution
us 2 H1

D;locðX
extÞ, which is equivalent to

usjeX 2 H1
DðeXÞ :¼ u 2 L2ðeXÞ :

@u
@xi
2 L2ðeXÞ ^ Du 2 L2ðeXÞ� �

;

for all bounded domains eX � Xext with the derivatives understood
in the distributional sense.

To solve the boundary value problem (1) we use the direct
approach via the representation formula [13,14,2,1,15]

us ¼Wjc0;extus � eV jc1;extus in Xext; ð2Þ

with the trace operators

c0;ext : H1
D;locðX

extÞ ! H1=2ð@XÞ; c0;extu ¼ uj@X for u 2 C1ðXextÞ;

c1;ext : H1
D;locðX

extÞ ! H�1=2ð@XÞ; c1;extu ¼ @u
@n

for u 2 C1ðXextÞ;

n denoting the unit exterior normal vector to X, the single-layer
and double-layer potentials

eV j : H�1=2ð@XÞ ! H1
D;locðX

extÞ;

ðeV jqÞðxÞ :¼
Z
@X

vjðx; yÞqðyÞdsy; ð3Þ

Wj : H1=2ð@XÞ ! H1
D;locðX

extÞ;

ðWjtÞðxÞ :¼
Z
@X

@vj

@ny
ðx; yÞtðyÞdsy; ð4Þ

and the fundamental solution of the Helmholtz equation in 3D

vjðx; yÞ :¼ 1
4p

eijkx�yk

kx� yk :

To evaluate the solution us in x 2 Xext using the formula (2) it is nec-
essary to complete the Cauchy data c0;extus; c1;extus. Since the
Dirichlet trace c0;extus is given by g ¼ �c0;extui, only the missing
Neumann trace c1;extus needs to be computed. Applying the
Dirichlet trace operator c0;ext to the representation formula (2)
and using the well-known properties of the potential operators
(3) and (4) (see, e.g., [14,2,15,1]) we obtain the boundary integral
equation

ðVjc1;extusÞðxÞ ¼ �
1
2

gðxÞ þ ðKjgÞðxÞ for x 2 @X; ð5Þ

with the single-layer and double-layer boundary integral operators

Vj : H�1=2ð@XÞ!H1=2ð@XÞ; ðVjqÞðxÞ :¼
Z
@X

vjðx;yÞqðyÞdsy; ð6Þ

Kj : H1=2ð@XÞ!H1=2ð@XÞ; ðKjtÞðxÞ :¼
Z
@X

@vj

@ny
ðx;yÞtðyÞdsy: ð7Þ

Note that contrary to the potentials (3) and (4), the functions
Vjq; Kjt are only defined on @X.

The Galerkin formulation equivalent to (5) reads

hVjc1;extus; si@X ¼ �1
2

I þ Kj

� �
g; s

	 

@X

for all

s 2 H�1=2ð@XÞ: ð8Þ

2.2. Boundary element method

To discretize the Galerkin formulation (8) we triangulate the
surface @X into E flat shape-regular open triangles si, i.e.,

@X �
[E
n¼1

si:

To approximate the Cauchy data we use piecewise linear ansatz for
the Dirichlet data c0;extus and piecewise constant ansatz for the
Neumann data c1;extus

c0;extus ¼ g � t :¼
XN

i¼1

tjuj; c1;extus � s :¼
XE

i¼1

siwi;

where N denotes the total number of mesh nodes. Using piecewise
constant testing functions w‘ this results in the discrete system of
linear equations

M. Merta, J. Zapletal / Advances in Engineering Software 86 (2015) 70–79 71



Download	English	Version:

https://daneshyari.com/en/article/567199

Download	Persian	Version:

https://daneshyari.com/article/567199

Daneshyari.com

https://daneshyari.com/en/article/567199
https://daneshyari.com/article/567199
https://daneshyari.com/

