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a b s t r a c t

A method and an algorithm for numerical estimation of effective mechanical properties of porous mate-
rials are presented. The effective properties are sought in the form of the nonlinear relation between the
second Piola–Kirchhoff stress tensor and the Green strain tensor for anisotropic materials with second-
order nonlinearities accounted for. The effective characteristics of test models are computed by means
of a CAE Fidesys program module based on the proposed algorithm. The effective material properties
as functions of porosity are examined. The finite element mesh that contained more than a million of ele-
ments was used while performing stress analysis of a specimen. To reduce computing time, assembly and
solution of the global equation system was done in parallel using CUDA technology. The computations
were carried out on NVIDIA Tesla C2050 graphics processors. Our results show that accounting for non-
linear effects is essential for correct estimation of effective properties of porous materials.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of estimating the effective properties of porous
materials [1] is important for the analysis of specimen properties
during geological exploration of oil fields. Such material properties
are used for computational modeling of physical processes in the
course of field development and operation. At present the existing
mathematical models do not allow to calculate the effective prop-
erties of porous materials with the accuracy suitable for industrial
use. The effective material properties are usually determined
experimentally, by testing of multiple specimens. Nevertheless,
an efficient development of an oil field is impossible without com-
plicated numerical modeling that requires significant computer
power. It is necessary to perform multiple computer solutions for
the determination of effective averaged properties of porous sam-
ples. Computational procedure for estimation of averaged proper-
ties of porous materials is suitable for effective parallelization
using large number of computational nodes, such as in cluster-type
systems. The use of hybrid supercomputers (MPI, CUDA, Open MP-
based) allows enormous increase of the speed of modeling

effective prototype properties thus decreasing time and cost of lab-
oratory tests.

2. Problem statement

Let us consider the representative volume, filled with porous
material. We assume that an effective (averaged) material should
satisfy to the following condition: average volume stresses in real
and effective materials are equal under the same displacements of
faces that bound the representative volume [2–4].

Here we describe a method for creating effective constitutive
relationships for the porous material with the use of definition
given above. We solve certain sequences of boundary value prob-
lems of nonlinear elasticity for the representative volume V0 in
its initial state (before deformation) [6–8]:

r � r ¼ 0 ð1Þ

with boundary conditions

ujC0
¼ R � ðFe� � IÞ ð2Þ

It is shown [9] that the superposition of a rigid motion on the
deformation of a porous body does not change the effective consti-
tutive equations.
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The mechanical properties of a matrix material are described by
Hooke’s law or by constitutive relations of Murnaghan [5]:

R
0
¼ kðE : IÞI þ 2GEþ 3C3ðE : IÞ2I þ C4ðE2 : IÞI þ 2C4ðE : IÞEþ 3C5E2

ð3Þ

Here r is the true total state stress tensor (Cauchy stress tensor); R
0

is the second Piola–Kirchhoff stress tensor; E is the Green strain
tensor; I is the second-order identity tensor; F is the corresponding
affinor (deformation gradient) [6], F ¼ dr

dR; R is the radius vector of a
particle in the initial state, r is the radius vector of a particle in the
current state; r � R ¼ u;u is the displacement vector from the initial
state to the current state; k and G are the first-order elastic con-
stants; C3; C4, and C5 are the second-order elastic constants. The
index e corresponds to the effective material. The colon in equations
is the sign of double tensor contraction.

Each problem sequence corresponds to certain appearance of
the Green strain tensor Ee of the effective material (and to certain
deformation gradient F in boundary conditions). Also, different
problems of one sequence differ by strain magnitude.

We find stress tensor r by solving each problem of each
sequence. Using r it is possible to calculate stress tensor re of
effective material according to the following formula:

re ¼ 1
V

Z
V
rdV ¼ 1

V

Z
C

N � rr dC ð4Þ

where N is an external normal to boundary C and r is the radius
vector.

Last equality in (4) has been received with the help of the diver-
gence theorem and the following observation from tensor analysis:

r � ðrrÞ ¼ ðr � rÞr þ rðrrÞ� ¼ ðr � rÞr þ r � I ¼ r ð5Þ

Knowing the deformation gradient (that was set by us) and true
stress tensor, we can calculate Green strain tensor and second
Piola–Kirchhoff stress of the effective material:

Ee ¼ 1
2
ðFe� � Fe � IÞ ð6Þ

Re
0

¼ ðdet FeÞðFeÞ�1 � re � ðFeÞ��1 ð7Þ

We assume that the dependence of the Piola–Kirchhoff stress
tensor components on a strain parameter q for each problem
sequence (i.e. for each load type) can be described by a quadratic
function:

Re
ij

0

¼ a0
ijqþ a1

ijq
2 ð8Þ

Accordingly we will search for effective constitutive relations as

a nonlinear dependence of the Piola–Kirchhoff stress tensor Re
0

on
the Green strain tensor Ee:

Re
ij

0

¼ C0
ijklE

e
kl þ C1

ijklmnEe
klE

e
mn ð9Þ

The second term in the right-hand side is introduced in order to
take into account nonlinear effects in the effective constitutive
equations.

The effective elastic moduli C0
ijkl and C1

ijklmn of the porous mate-
rial depend on porosity.

It is worth noting that finding the effective constitutive rela-
tions of the porous material in the nonlinear case above requires
solving 21 sequences of cases (equal to the number of independent
elastic modules in (9)). Each sequence must contain no less than
three problems (i.e. for each load type – no less than three load

cases) in order to perform least squares method for determining
coefficients in (8).

3. Solution method

In practice it is convenient to set the Green strain tensor and to
employ it for computation of the deformation gradient using for-
mula (6). Since the deformation gradient is a non-symmetric ten-
sor of the second rank it cannot be uniquely determined from
the symmetric Green strain tensor. That is why we set the defor-
mation gradient as an upper triangular matrix. Then its six compo-
nents are uniquely defined by six independent components of the
Green strain tensor.

After calculation of the deformation gradient, we apply bound-
ary conditions (2) to the model, solve the boundary value problem
of nonlinear elasticity and find stresses r.

The following sequences of problems are solved:

(1) E11 ¼ q – uniaxial tension or compression in the X direction;
(2) E22 ¼ q – uniaxial tension or compression in the Y direction;
(3) E33 ¼ q – uniaxial tension or compression in the Z direction;
(4) E12 ¼ E21 ¼ q – shear in the XY plane;
(5) E13 ¼ E31 ¼ q – shear in the XZ plane;
(6) E23 ¼ E32 ¼ q – shear in the YZ plane;
(7) E11 ¼ E22 ¼ q – biaxial tension or compression in the XY

plane;
(8) E0

11 ¼ E0
33 ¼ q – biaxial tension or compression in the XZ

plane;
(9) E0

11 ¼ E0
22 ¼ E0

33 ¼ q – uniform tension or compression;
(10) E11 ¼ q; E12 ¼ E21 ¼ q – superposition of uniaxial tension or

compression in the X direction and shear in the XY plane;
(11) E22 ¼ q; E12 ¼ E21 ¼ q – superposition of uniaxial tension or

compression in the Y direction and shear in the XY plane;
(12) E33 ¼ q; E12 ¼ E21 ¼ q – superposition of uniaxial tension or

compression in the Z direction and shear in the XY plane;
(13) E11 ¼ q; E13 ¼ E31 ¼ q – superposition of uniaxial tension or

compression in the X direction and shear in the XZ plane;
(14) E22 ¼ q; E13 ¼ E31 ¼ q – superposition of uniaxial tension or

compression in the Y direction and shear in the XZ plane;
(15) E33 ¼ q; E13 ¼ E31 ¼ q – superposition of uniaxial tension or

compression in the Z direction and shear in the XZ plane;
(16) E11 ¼ q; E23 ¼ E32 ¼ q – superposition of uniaxial tension or

compression in the X direction and shear in the YZ plane;
(17) E22 ¼ q; E23 ¼ E32 ¼ q – superposition of uniaxial tension or

compression in the Y direction and shear in the YZ plane;
(18) E33 ¼ q; E23 ¼ E32 ¼ q – superposition of uniaxial tension or

compression in the Z direction and shear in the YZ plane;
(19) E12 ¼ E21 ¼ q; E13 ¼ E31 ¼ q – superposition of shears in the

XY and XZ planes;
(20) E12 ¼ E21 ¼ q; E23 ¼ E32 ¼ q – superposition of shears in the

XY and YZ planes;
(21) E13 ¼ E31 ¼ q; E23 ¼ E32 ¼ q – superposition of shears in the

XZ and YZ planes;

here q is a strain parameter.
The effective stress tensor re is calculated with the help of aver-

aging (4). Using Eq. (7), the Piola–Kirchhoff stress tensor Re
0

is
determined.

Then the dependence of the Piola–Kirchhoff stress tensor on the
strain parameter q is generated for each problem sequence. These
dependences are approximated by expressions (8). Coefficients a0

ij

and a1
ij are found using the least squares method.

The coefficients C0
ijkl from (9) are determined through the coef-

ficients a0
ij, and coefficients C1

ijklmn – through a1
ij that are calculated
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