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a b s t r a c t

Since delamination is a major failure mode of layered composites, predicting its initiation is essential for
the design of composite structures. Evaluating delamination onset criteria based on stress–strength rela-
tions requires an accurate representation of the through-the-thickness stress distribution, which is del-
icate for thin shell-like structures. Therefore, in this paper, a solid-shell finite element is utilized, which
allows for incorporating a fully three-dimensional, anisotropic, micro-mechanically motivated material
model, still being suited for application to thin structures. Moreover, locking phenomena are cured by
using both the enhanced assumed strain (EAS) and the assumed natural strain (ANS) concept, and numer-
ical efficiency is ensured through reduced integration.

� 2014 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

1. Introduction

In many technical applications in the field of lightweight con-
structions, fiber-reinforced composites are gaining importance
due to their most beneficial characteristics, the very high Young’s
modulus and low density. These are particularly leveraged in
shell-like structures of lightweight constructions. The composites
considered in this paper consist of multiple layers, each of which
is composed of a fiber-reinforced thermoset matrix material.
Besides this anisotropic structure, the stress–strain behavior of
fiber composite materials is highly non-linear. Moreover, the
response of the materials in tension and compression can differ
significantly.

To represent this complex material behavior the model pro-
posed by Reese in [1] for fiber-reinforced rubber-like composites
has been adopted, in which the transition from the micro-scale
to the macro-scale is formulated in a general manner. Therefore,
this model is not restricted to rubber-like materials but also suit-
able for the carbon fiber-reinforced plastics (CFRP) considered
here.

Structural collapse in fiber composite structures is caused by
the evolution of either matrix transverse cracking, fiber fracture,
or delamination. From these different damage modes, the delami-
nation is particularly important, because it drastically reduces the
bending stiffness of the structure and promotes local buckling in
case of compressive loads [2,3]. Including delamination into the
computation of composite structures requires the definition of an

appropriate criterion for its onset as well as the prediction of its
growth after an initial crack has evolved.

For the initiation of delamination, different criteria exist, formu-
lated in dependence of stress-resistance relations, e.g. [4–8]. After
onset of delamination, the high stress gradients appearing at the
crack front prohibit employing solely stress-based criteria. Thus,
fracture mechanics approaches are often used for simulating the
delamination propagation, such as the virtual crack closure tech-
nique, [9–11]. As an alternative, delamination growth can be trea-
ted within the framework of damage mechanics using cohesive
zone models, which are incorporated into the finite element simu-
lation by interface elements, e.g. [12–15]. However, in this paper,
the onset of delamination is addressed based on stress-resistance
relations.

Since fiber-reinforced composites are mostly applied in thin
shell-like structures, the element formulation demands providing
a suitable shape for thin structures while displaying realistically
the three-dimensional stress states. Although shell formulations
exist, which take into account the through-the-thickness stretch-
ing, see e.g. [16,17], the implementation of three-dimensional
material models is much simpler in the context of solid elements.
On the other hand, the latter typically provide a poor performance
when being applied to thin shell-like structures. In particular, there
are different locking phenomena to be coped with, which cause an
overestimation of the stress state and an underestimation of the
deformation. Using solid-shell elements represents one strategy
to overcome this problem by combining the advantages of both
solid elements and shell elements at the same time. Further, apply-
ing the enhanced assumed strain (EAS) concept eliminates the
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volumetric locking in case of (nearly) incompressible materials as
well as the Poisson thickness locking, which occurs in bending
problems of shell-like structures due to the non-constant distribu-
tion of transverse normal strain over the thickness.

In literature, one can find several solid-shell formulations incor-
porating the EAS concept, see e.g. [18–20], to name only a few. To
cure the transverse shear locking, which is present in standard
eight-node hexahedral elements, the assumed natural strain
(ANS) method is applied. In the context of full integration formula-
tions, the ANS can be found e.g. in [21,22], and for reduced integra-
tion solid-shell formulations e.g. in [23–26]. The formulation
presented in this paper is based on the works of Schwarze and
Reese [24–26].

For laminated layered composites, the accurate determination
of the through-the-thickness stress distribution was recently
investigated by several authors. For instance, in [27] an improved
shell formulation was used for this, whereas in [28] the investiga-
tions were based on the solid-shell concept. For a more elaborate
literature overview, the reader is referred to the review papers
[29–31] and the references therein. However, to our knowledge
no solid-shell formulations exist, which consider the orthotropic
behavior of fiber composites with woven fabric accounting for dif-
ferent fiber directions.

This paper is based on [32], where for better comprehensibility
the wording has been improved and additional figures have been
included. Further, since experimental validation is out of scope of
this work, the addition of a second numerical example seemed to
be advisable.

2. Orthotropic material model

The fiber composites examined in this paper consist of stacked
layers, each of which is composed of a woven fabric embedded in a
matrix material. The anisotropic material behavior of such com-
posites is taken into account by using the micro-mechanically
motivated model proposed in [1]. Describing the matrix by the
Neo-Hooke material model allows for incorporating rubber-like
matrix materials with sufficient accuracy, whereas viscous effects
of e.g. epoxy resin cannot be represented. However, in the follow-
ing, the basics of the continuum model are summarized. Therein,
parameters are chosen to represent approximately the behavior
of carbon fibers in an epoxy resin matrix.

2.1. Concept of structural tensors

Introducing the deformation gradient F, the deformation of a
continuous body is represented by the right Cauchy-Green tensor

C ¼ FT F ð1Þ

The characterization of a hyperelastic body is then given by the
existence of a scalar potential, which is the stored energy function
W = W(C), such that

S ¼ 2
@WðCÞ
@C

ð2Þ

is the second Piola–Kirchhoff stress tensor. In the case of orthotro-
pic material behavior, the energy function W(C) reduces to an iso-
tropic function of C and the structural tensors M1 and M2, which
are defined by

M1 ¼ n1 � n1 and M2 ¼ n2 � n2 ð3Þ

where the vectors n1 and n2 are oriented in parallel direction to the
fibers as shown in Fig. 2. For a discussion of the theoretical back-
ground, the reader is referred to [33] and the references therein.

Then, the strain energy function W can be represented in depen-
dence of the following invariants:

I1 ¼ trC I2 ¼
1
2

trCð Þ2 � tr C2
� �h i

I3 ¼ det C ð4aÞ

I4 ¼ tr CM1ð Þ I5 ¼ tr C2 M1

� �
ð4bÞ

I6 ¼ tr CM2ð Þ I7 ¼ tr C2 M2

� �
ð4cÞ

2.2. Strain energy function

In this work, the anisotropic model from Reese [1] is adopted,
which assumes that the fibers do not carry any load in case of com-
pression but only in tension, which is not realistic for the CFRP con-
sidered here. Therefore, this model is slightly modified, such that
the matrix acts as an elastic continuous support for the embedded
fibers. Hence, the compressive behavior is considered approxi-
mately the same as the tensile one. Further, plastic contributions
are not needed to be taken into account for carbon fibers. More-
over, the fiber volume fractions 0 6u1 and 0 6u2 for the two fam-
ilies of fibers are introduced, where u1 + u2 6 1 holds. Except of
this, we adopt the mentioned model and use the following strain
energy function:

W ¼ ð1�u1 �u2ÞWNHðI1; I3Þ þWaniðu1;u2; I1; I2; I4; I5; I6; I7Þ ð5Þ

Here, WNH denotes the Neo-Hookean part displaying the isotropic
case in the small strain regime. Denoting the Lamé constants by l
and K, the strain energy function is given by

WNHðI1; I3Þ ¼
l
2
ðI1 � 3Þ � l ln

ffiffiffiffi
I3

p
þK

4
I3 � 1� 2 ln

ffiffiffiffi
I3

p� �
ð6Þ

The anisotropic behavior of the fabric is introduced by the part

Waniðu1;u2; I1; I2; I4; I5; I6; I7Þ¼Kiso
1 ðI1�3Þa1 þKiso

2 ðI2�3Þa2

þu1 Kani1
1 ðI4�1Þb1 þKani1

2 ðI5�1Þb2
h i

þu2 Kani2
1 ðI6�1Þc1 þKani2

2 ðI7�1Þc2

h i
þKcoup aniðI4�1ÞnðI6�1Þn

ð7Þ

The exponents ai, bi, ci, (i = 1, 2), and n are chosen to be integers
larger than 2. Together with the values Kiso

1 ; Kiso
2 ; Kani 1

1 ; Kani 1
2 ,

Kani 2
1 ; Kani 2

2 , and Kcoup ani, they constitute the set of material param-
eters of the current model. Notably, in [1] further coupling terms
have been introduced, which have hardly influenced the results,
and therefore are dropped here.

Furthermore, the isotropic material response is already suffi-
ciently described by the Neo-Hookean part, such that Kiso

1 and Kiso
2

can be neglected. The other parameters have to be fitted to exper-
imental data. In the case of unidirectional fibers, this can be done
by tensile tests in different fiber orientations (see [34]), whereas
in [1] numerical experiments are performed for the woven com-
posites. For the latter, appropriate representative volume elements
(RVE) need to be defined, as illustrated in Fig. 1.

Fig. 1. Representative volume element (RVE) of woven composite.
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