
GPU-based acceleration of computations in elasticity problems solving
by parametric integral equations system

Andrzej Kuzelewski ⇑, Eugeniusz Zieniuk
Faculty of Mathematics and Informatics, University in Bialystok, Sosnowa 64, 15-887 Bialystok, Poland

a r t i c l e i n f o

Article history:
Received 9 July 2014
Received in revised form 2 September 2014
Accepted 16 September 2014
Available online 8 October 2014

Keywords:
Parametric integral equations system
Elasticity problems
Graphics Processing Unit
GPGPU
CUDA
Multithreaded computing

a b s t r a c t

Application of techniques for modelling of boundary value problems implies two conflicting require-
ments: obtaining high accuracy of the results and speed of the solution. Accurate results can be obtained
only by using appropriate models and algorithms. In the previous papers the authors applied the
parametric integral equations system (PIES) in modelling and solving boundary value problems. The first
requirement was satisfied – the results were obtained with very high accuracy. This paper fulfils the sec-
ond requirement by novel approach to accelerate PIES. Graphics cards (GPUs) programming for numerical
calculations in general purpose applications (GPGPU) using NVIDIA CUDA is used for this purpose. The
speed of calculations increased up to 80 times whereas high accuracy of the solutions was maintained. Exam-
ples included in this paper concern solving elasticity problems which are modelled by three-dimensional
Navier–Lamé equations.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

For many years the authors of this paper have being worked on
development and application of parametric integral equations sys-
tem (PIES) to solve boundary value problems. PIES has already
been used to solve problems modelled by 2D and 3D partial
differential equations, such as: Laplace’s [1,2], Helmholtz [3] or
Navier–Lamé [4–6]. The remarkable advantage of PIES, compared
with traditional boundary integral equation (BIE), is direct inclu-
sion in its mathematical formalism a shape of boundary of a con-
sidered problem [7]. The shape of boundary is generally defined
using particular functions. For this purpose, the curves (eg. Bézier,
B-spline, etc.) or surface patches (Coons, Bézier, and others) widely
used in computer graphics, were applied in PIES. PIES is an analyt-
ical modification of traditional BIE. The above mentioned curves
and surface patches are applied in modelling the shape of the
boundary, instead of the contour integral as in the case of BIE.
Therefore in practice, a small number of control points is required
to define a shape of the boundary. This way of modelling is defi-
nitely much easier in comparison with the other methods: bound-
ary element method (BEM) [8] or finite element method (FEM) [9].
Moreover, the accuracy of solutions can be efficiently improved
without interference in modelling of a shape of boundary.

The former studies focused on high accuracy and efficiency of
the results obtained using PIES, which were compared to the other

algorithms (FEM or BEM) as well as analytical methods. These
studies confirmed the high effectiveness and accuracy of PIES in
solving 2D [1,4] and 3D [2,5,6] boundary value problems. However,
the problem of increasing computing time of complex numerical
algorithms forced the authors’ attention, as well. In general, the
greater number of input data, the longer an algorithm works. It
was noticed in case of some more complex problems solved by
PIES (eg. modelled by Navier–Lamé equations or increasing the
dimensionality of the problem from 2D to 3D). PIES uses the strat-
egy of global numerical integration on the entire surface patches.
This integration does not require the splitting of patches on smaller
elements, however it is necessary to use a large number of weight
coefficients in cubatures in order to obtain high accuracy of solu-
tions. The number of these coefficients has a significant influence
on the duration of the implementation of PIES. Acceleration of
the algorithm can be achieved in the following ways: by optimisa-
tion of the existing code as well as use of more advanced comput-
ers, multiprocessor machines, clusters or GPUs.

Recently, many researchers in various fields have increased
their attention on the implementation of graphics cards (GPUs)
for numerical calculations in general-purpose applications
(GPGPU). Due to great possibility of improving computing perfor-
mance, scientists have already investigated application of the men-
tioned technology in problems in the following areas: applied
mathematics [10–12], physics [13], biology and medicine [14,15],
seismic research [16,17], peridynamics [18], and others. Numerical
modelling and solving boundary problems were accelerated using
the modern techniques of graphic cards programming adapted to

http://dx.doi.org/10.1016/j.advengsoft.2014.09.003
0965-9978/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail address: akuzel@ii.uwb.edu.pl (A. Kuzelewski).

Advances in Engineering Software 79 (2015) 27–35

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2014.09.003&domain=pdf
http://dx.doi.org/10.1016/j.advengsoft.2014.09.003
mailto:akuzel@ii.uwb.edu.pl
http://dx.doi.org/10.1016/j.advengsoft.2014.09.003
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


BEM [19,20], FEM [21,22], finite difference method (FDM) [23] or
meshless methods [24,25], as well. The interests of scientists are
related to the modern architecture of graphics cards (multiproces-
sor and multithreaded), very fast floating-point arithmetic units,
use of high-speed memory and, first of all, ease of programming.
In November 2006, NVIDIA has produced the first series of graphics
cards that employ a new parallel computing platform and pro-
gramming model called Compute Unified Device Architecture
(CUDA) [26]. It was a break-through in programming and feasibil-
ity of general-purpose applications executed on GPU. CUDA C pro-
gramming language is an extension to the C/C++ and definitely
simplifies writing of non-graphical programs compared with
graphics-oriented languages such as Cg, GLSL or HLSL.

The architecture of graphics processing units (GPUs)
significantly differs from central processing units (CPUs). GPU is
composed of multiple floating point units (FPU) and arithmetic
and logic units (ALUs). It is connected with the nature of performed
calculations – the same operations are executed in parallel on large
amounts of data. Using a lot of pixels, texels or vertices is typical in
graphics applications, therefore GPUs are rated as SIMT (single
instruction, multiple thread).

CUDA-enabled NVIDIA GPUs are multithreaded, parallel, many-
core processors. They are composed of a set of multithreaded
streaming multiprocessors (SMs). Each multiprocessor contains a
number of general-purpose streaming processors cores (SPs),
multithreaded instruction unit and on-chip shared memory. Also,
it comprises a number of 32-bit registers, a texture cache and a
read-only constant cache. SPs can compute one arithmetic
multiply or add operation per clock cycle. In the case of multi-
ply-and-add operation it is equivalent to two operations per clock
cycle. The execution of other instructions require greater number
of clock cycles (eg. square root is computed per 10 clock cycles).

GPU is directly connected to a read-write off-chip device mem-
ory (DRAM). It can store a large amount of data according to the
type of applied hardware (hundreds megabytes to few gigabytes).
CPU exchanges data with GPU via host and device memory. The
main disadvantage of device memory is its latency. SM requires
about 400–600 clock cycles for access DRAM, whilst SP takes only
4 clock cycle for accessing to registers or shared memory. More
detailed studies are presented in [27].

GPU works in close connection with CPU – it operates as an
additional processor attached to CPU. GPU performs operations
assigned to it by the application that must start running on CPU.
Only a part of original program, which requires paralellization,
should be recoded. Serial part of CUDA application code runs on
host (CPU) and parallel part on CUDA device (GPU). The set of all
functions performed on host is called host program, while func-
tions performed on device are called kernels. Host program is
responsible for initiation and transfer of data to/from device mem-
ory. During execution of a program the host calls kernels, as well.
Data flow in CUDA is divided into four basic steps: 1. initiation of
the program (host), 2. copying data from host to device, 3. calcula-
tions on GPU, 4. copying data from device to host.

In this paper, the authors decided to examine the application of
modern parallel computing solutions to increase the efficiency of
calculations in the numerical solution of PIES. Numerical
calculations were performed for three dimensional Navier–Lamé
equations using CUDA-enabled NVIDIA GPU.

2. PIES for three-dimensional Navier–Lamé equations

PIES for three-dimensional Navier–Lamé equations was
obtained as the result of analytical modification of BIE. Detailed
studies of the methodology of modification for two-dimensional
problems modelled by various differential equations are presented
in [1,4]. Generalization of the mentioned methodology to three-

dimensional problems with smooth boundary results in the follow-
ing formula of PIES [5,7]:

0:5ulðv1;w1Þ ¼
Xn

j¼1

Z �v j

�v j�1

Z �wj

�wj�1

U�ljðv1;w1;v ;wÞpjðv;wÞ
n

�P�ljðv1;w1; v;wÞujðv;wÞ
o

Jjðv;wÞdvdw; ð1Þ

where �v l�1 6 v1 6 �v l, �wl�1 6 w1 6 �wl, �v j�1 6 v 6 �v j, �wj�1 6 w 6 �wj,
fl; jg ¼ 1;2; . . . ; n;n – is the number of parametric patches that create
the domain boundary in 3D, whilst function Jjðv ;wÞ is the Jacobian.

Integrands U�ljðv1;w1;v ;wÞ and P�ljðv1;w1;v ;wÞ in (1) are pre-
sented in the following matrix form [5,7]:

U�ljðv1;w1;v;wÞ¼
1

16pð1�mÞlg

U11 U12 U13

U21 U22 U23

U31 U32 U33

264
375; l¼ E

2ð1þmÞ ; ð2Þ

P�ljðv1;w1;v ;wÞ¼
1

8pð1�mÞg2

P11 P12 P13

P21 P22 P23

P31 P32 P33

264
375: ð3Þ

The individual elements in the matrix (2) in an explicit form are
presented as follows:

U11 ¼ 3� 4mð Þ þ g2
1

g2 ; U12 ¼
g1g2

g2 ; U13 ¼
g1g3

g2 ;

U21 ¼
g2g1

g2 ; U22 ¼ 3� 4mð Þ þ g2
2

g2 ; U23 ¼
g2g3

g2 ;

U31 ¼
g3g1

g2 ; U32 ¼
g3g2

g2 ; U33 ¼ 3� 4mð Þ þ g2
3

g2 ;

while in the matrix (3):

P11¼ 1�2mð Þþ3
g2

1

g2

� �
@g
@n
; P12¼3

g1g2

g2

@g
@n
� 1�2mð Þg1n2�g2n1

g
;

P13¼3
g1g3

g2

@g
@n
� 1�2mð Þg1n3�g3n1

g
;

P21¼3
g2g1

g2

@g
@n
� 1�2mð Þg2n1�g1n2

g
;

P22¼ 1�2mð Þþ3
g2

2

g2

� �
@g
@n
; P23¼3

g2g3

g2

@g
@n
� 1�2mð Þg2n3�g3n2

g
;

P31¼3
g3g1

g2

@g
@n
� 1�2mð Þg3n1�g1n3

g
;

P32¼3
g3g2

g2

@g
@n
� 1�2mð Þg3n2�g2n3

g
;

P33¼ 1�2mð Þþ3
g2

3

g2

� �
@g
@n
;

wherein n1 � n1ðv;wÞ, n2 � n2ðv;wÞ, n3 � n3ðv ;wÞ are the
components of nj – the normal vector to the surface j. Parameters
m and E are material constants: Poisson’s ratio and Young modulus
respectively.

Integrands (2) and (3) include in their mathematical formalism
the shape of a closed boundary surface. It is created using appropri-
ate relationships between patches ðfl; jg ¼ 1;2; . . . ;nÞ, which are
defined in Cartesian coordinates system as follows:

g1 ¼ Pð1Þj ðv;wÞ � Pð1Þl ðv1;w1Þ; g2 ¼ Pð2Þj ðv;wÞ � Pð2Þl ðv1;w1Þ;

g3 ¼ Pð3Þj ðv;wÞ � Pð3Þl ðv1;w1Þ; g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2

1 þ g2
2 þ g2

3

q
;

@g
@n
¼ g1

g
n1 þ

g2

g
n2 þ

g3

g
n3;

ð4Þ

where Pð1Þj ; Pð2Þj ; Pð3Þj are the scalar components of the vector surface

Pjðv;wÞ ¼ Pð1Þj ðv ;wÞ; P
ð2Þ
j ðv ;wÞ; P

ð3Þ
j ðv;wÞ

h iT

28 A. Kuzelewski, E. Zieniuk / Advances in Engineering Software 79 (2015) 27–35



Download English Version:

https://daneshyari.com/en/article/567289

Download Persian Version:

https://daneshyari.com/article/567289

Daneshyari.com

https://daneshyari.com/en/article/567289
https://daneshyari.com/article/567289
https://daneshyari.com

