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a b s t r a c t

The analysis of masonry double curvature structures by means of the kinematic theorem of limit analysis
is traditionally the most diffused and straightforward method for an estimate of the load carrying capac-
ity. However, the evaluation of the actual failure mechanism is not always trivial, especially for complex
geometries and load conditions. Usually, the failure mechanism is simply hypothesized basing on previ-
ous experience, or – due to the complexity of the problem – FE rigid elements with interfaces are used.
Both strategies may result in a wrong evaluation of the failure mechanism and hence, in the framework of
the kinematic theorem of limit analysis, in an overestimation of the collapse load.

In this paper, a simple discontinuous upper bound limit analysis approach with sequential linear pro-
gramming mesh adaptation to analyze masonry double curvature structures is presented. The discretiza-
tion of the vault is performed with infinitely resistant triangular elements (curved elements basing on a
quadratic interpolation), with plastic dissipation allowed only at the interfaces for possible in- and out-
of-plane jumps of velocities. Masonry is substituted with a fictitious material exhibiting an orthotropic
behavior, by means of consolidated homogenization strategies.

To progressively favor that the position of the interfaces coincide with the actual failure mechanism, an
iterative mesh adaptation scheme based on sequential linear programming is proposed. Non-linear geo-
metrical constraints on nodes positions are linearized with a first order Taylor expansion scheme, thus
allowing to treat the NLP problem with consolidated LP routines.

The choice of inequalities constraints on elements nodes coordinates turns out to be crucial on the
algorithm convergence. The model performs poorly for coarse and unstructured meshes (i.e. at the initial
iteration), but converges to the actual solution after few iterations.

Several examples are treated, namely a straight circular and a skew parabolic arch, a cross vault and a
dome. The results obtained at the final iteration fit well, for all the cases analyzed, previously presented
numerical approaches.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The analysis of masonry vaults up to collapse is a controversial
issue that still is the object of investigation by specialized
literature.

Far before the diffusion of computers, several graphical
attempts for the study of the equilibrium of masonry domes were
attempted by famous ‘‘fathers’’ of the mechanics, as for instance
Bouguer (1734), Coulomb (1773), Bossut (1778) and Mascheroni
(1785), who proposed simple mono-dimensional equilibrium
equations, neglecting the role of circumferential actions. Anyway,
what was clear from the beginning, was that non-linearity appears

very early on curved masonry elements, even in presence of
self-weight and with very low tensile stresses.

In this context, a considerable improvement in the analysis of
spherical domes was achieved about 100 years later, when Levy
(1888) proposed a graphical analysis aimed at finding the circle
on which circumferential forces vanish. The history on the theories
dealing with masonry vaults is long and fascinating and we refer
the reader to the treatise by Benvenuto [1] for a comprehensive
review.

Exception made for some particular cases, either where geo-
metric and load symmetry may help in simplifying the problem
or for single curvature structures (arches), and despite the consid-
erable wide spreading of Finite Elements programs, it can be
affirmed that, at present the models available to practitioners for
a fast and reliable analysis of curved structural elements beyond

http://dx.doi.org/10.1016/j.advengsoft.2014.09.004
0965-9978/� 2014 Elsevier Ltd. All rights reserved.

E-mail address: gabriele.milani@polimi.it

Advances in Engineering Software 79 (2015) 91–110

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2014.09.004&domain=pdf
http://dx.doi.org/10.1016/j.advengsoft.2014.09.004
mailto:gabriele.milani@polimi.it
http://dx.doi.org/10.1016/j.advengsoft.2014.09.004
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


the elastic limit are a few, see for instance the indications provided
by Como [2], Heyman [3–5] and Huerta [6].

Limit analysis theorems associated with FEs, both in the static
and kinematic version, are still the most effective and widespread
procedure to estimate the collapse loads of one dimensional arches
[7–12]. Indeed, limit analysis combines, on one hand, sufficient
insight into collapse mechanisms, ultimate stress distributions –
at least in critical sections – and load capacities, and on the other
hand, simplicity to be cast into a practical computational tool.
Given the difficulties in obtaining reliable experimental data for
frictional materials, another appealing feature of limit analysis is
the reduced number of necessary material parameters.

Similarly to arches, cupolas may be treated as well with 1D
computerized approaches, but only under the quite restrictive con-
dition of axi-symmetric loads [12–14].

Exception made for some special cases, the extension of auto-
mated approaches for complex geometries, general load condi-
tions, reinforced arches and structures interacting with the infill
still remains a challenging topic [15–19], despite experimentation
in the field is putting at disposal a huge amount of experiences and
evidences [20–22].

In absence of dedicated software, the most straightforward
approach still remains the utilization of general purpose non-linear
FEs, either already implemented in commercial codes [23,24] or
non commercial but conceived for isotropic materials, as for
instance concrete [18,19].

The author of this paper has been active on the implementation
of FE limit analysis software specialized to the analysis of masonry
structures from one decade. In this framework, some different
approaches were proposed dealing with the prediction of the col-
lapse loads and failure mechanisms of masonry vaults, taking into
account some important distinctive aspects of the material, as
orthotropy and geometry issues [25–30]. The models include (1)
homogenized limit analyses by means of both plate and shell
[30] and 3D elements [28,29].

An enhanced code [27] recently presented allows the possibility
to model FRP reinforcement strips and steel tie rods, to quantita-
tively compare the situation before and after a rehabilitation inter-
vention conducted with either innovative or traditional
technology, thus implicitly selecting the most effective strategy
for structural upgrading and refurbishment.

The approaches proposed base almost always on the upper
bound theorem of classic limit analysis, i.e. where constitutive
materials are assumed rigid-perfectly plastic with infinite ductility
and the flow rule is associated.

From a technical point of view, the FE procedure bases on the
original idea firstly proposed by Sloan and Kleeman [31], who pre-
sented a plane strain upper bound approach with triangular dis-
cretization and possible plastic dissipation on both continuum
(triangles) and at the interfaces between adjoining elements. It
has been widely shown, indeed, that such approach is extremely
effective for cohesive frictional materials and therefore adapts well
to masonry [32].

To deal with complex coupled problems where both flexural
and membrane loads may play a crucial role in the formation of
the failure mechanism, as in the case of masonry vaults, the utili-
zation of triangular discretizations with dissipation on both ele-
ments and interfaces appears hardily applicable, both for the
difficulties in determining homogenized failure surfaces to be used
in a continuum schematization through a Reissner–Mindlin plate
and shell model (a failure surface with eight independent variables,
i.e. three internal membrane actions, three moments and two out-
of-plane shears) and for the prohibitive number of variables to use
in the classic framework of linear programming, even for small-
scale problems.

Recent trends in limit analysis (see for instance [33–41]) dem-
onstrated that the utilization of LP in solving the typical linear opti-
mization problem associated to the upper and lower bound
problems of limit analysis is less effective than the application of
robust non-linear programming routines (NLP), with the consider-
able advantage that the linearization of the material strength
domain is avoided. This allowed a further improvement in the
numerical efficiency of FE limit analysis programs.

Another fundamental issue of limit analysis is that the classical
lower and upper bound theorems allow a rigorous bracketing of
the exact collapse load for a perfectly plastic structure. As a conse-
quence, when such theorems are used in combination with the
finite element method, the ability to obtain tight bracketing
depends not only on the efficient solution of the arising optimiza-
tion problem, but also on the effectiveness of the elements
employed. Classic approaches aimed at improving the performance
is to increase the ‘‘quality’’ of velocity (or stress) field interpolation
inside elements, for instance using polynomial expansions with
degree larger than one [42]. Basing on this idea, for example the
so called free Galerkin approach and the p-FEM were used in
[43–45], respectively.

However, such high order elements pose a particular difficulty
when (strict) upper bound analyses must be performed, since the
flow rule is required to hold throughout each element, whereas
practically it can only be enforced on a finite number of points.
To circumvent such a limitation, a constant strain element com-
bined with discontinuities in the displacement field (see again
Sloan and Kleeman [31]) was proposed in the past.

A quite simple and diffused classic alternative is to use reme-
shing [46,47], which relies into the introduction of new nodes
and elements on those regions of the structure inside the process-
ing zone. Remeshing basically requires (1) a rule to decide where to
refine the mesh and (2) to establish in which way the mesh must
be automatically refined. Whilst the procedure is very straightfor-
ward, it has the obvious drawback of increasing exponentially the
computational effort needed after a few iterations, because the dis-
cretization is continuously refined where needed. In the frame-
work of an upper bound approach of limit analysis, one of the
rules – but not the unique – that may be adopted to identify the
zones needing remeshing is represented by the identification of
those elements where the plastic dissipation is large. In order not
to generate distorted meshes in the new iteration, either a regular
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Fig. 1. Six-noded curved element and identification of Ce
12 edge.
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Fig. 2. Ce
12 edge with thickness and se � qe � re curved local frame of reference.
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