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Optimal estimation of line segments in noisy lidar data
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Abstract

Lidar data usually is obtained by independently measuring distance r and angle j. Therefore, measurements of r and j
are statistically independent. However, in most approaches measurements in x and y are assumed to be uncorrelated thus

not taking properly into account the noise characteristic.

This article investigates the application of least squares (LS), total least squares (TLS), mixed-LS–TLS (MTLS),

structured total least norm (STLN) and maximum-likelihood (ML) estimators to the problem of estimating line segments

in noisy lidar data and compares their performance from a theoretical point of view. This analysis is supported by

simulation results. A new approach of estimating an arbitrary line segment without the need of parametric constraints is

proposed.
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1. Introduction

Sensors such as lidar, radar and sonar can be used
to build maps of the environment required for
navigation, cartography and tracking.

Fig. 1 depicts a typical constellation: within the
sensor’s field of view there is a car and a wall. All
objects are assumed to be unmoved. The contours
of both objects can be approximated by straight line
segments.

In many cases it is sufficient to model the (two-
dimensional (2D)) environment piece-wise by
straight lines. The parameters of these lines have

to be extracted from the sensor data in a somehow
optimal way.

Most often TLS or orthogonal regression and
their variants are used to estimate lines in noisy lidar
data [1–3]. Wijesoma [4] proposes a robust Eigen-
vector technique which is very similar to TLS.
Refs. [5,6] apply the Hough transform in a slightly
modified form which can cope with outliers.
Crowley [7] uses a kind of weighted orthogonal
regression with the weights derived from the
covariance matrix of the linearized error model.

However, apart from [7] these techniques do not
take into account the special noise characteristic of
the data given by lidar, radar or sonar. These
sensors measure distance and angle independently.
This leads to the polar coordinates of the data being
statistically independent while the Cartesian co-
ordinates are statistically dependent (see Section 3).
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Therefore, estimators specially designed to take into
account the statistical dependence outperform the
approaches listed above.

Our approach follows the idea of first modeling
the sensor’s error and then deriving an estimator
perfectly suited to this model. It is very similar to
the one given by Pfister et al. [8]. They take into
account both errors in distance and angle. Then
they linearize with respect to (w.r.t.) deviations of
the angle since these deviations are assumed to be
very small. They compute each point’s uncertainty
based on this linearized error model and use these
uncertainties as weights for an ML formulation.

In contrast to Pfister’s approach we start our
consideration by modeling the radial errors in an
ML formulation. We neglect the errors in angle
completely since they are very small. Thus, the
problem becomes more pleasant since this simplifi-
cation erases many local minima. An advantage of
Pfister’s work lies in its choice of parametrization of
the line since all lines are possible. Our approach
cannot cope directly with all lines due to the
parametrization chosen. But we can overcome this
limitation by rotating the coordinate system before
applying the ML estimator which does not affect the
optimality of the estimate.

The article is organized as follows: in Section 2,
we give a short survey of possible parametrizations
for lines highlighting their advantages and disad-
vantages. Section 3 introduces the noise model.
Section 4 describes the different approaches. In
Section 5, we give statistical properties of the LS
estimator and the ML estimator. Simulation results
in Section 6 and the conclusions in Section 7 finish
this article. All proofs are given in Appendix A.

In the following all coordinates are given in the
sensor’s coordinate system since there is no need for
global coordinates in this context. However, when
both translation ðDx; DyÞ and rotation Dc between
sensor and global coordinates are known it is easy
to perform this transformation.

2. Parametrizations of line segments

The task of estimating line segments naturally
falls into two parts:

(1) Estimation of the line’s parameters.
(2) Estimation or determination of the endpoints.

Following the noise characteristic given in Section 3
it is obvious to get the endpoints by cutting the
estimated line with the outermost (radial) rays since
in many cases noise on the angle can be neglected
compared to noise on the radius, respectively (resp.)
distance. Therefore, we concentrate in the following
on the estimation of the line’s parameters and
consider the task of determining the endpoints
afterwards as solved. Since a line in 2D has a total
of two degrees of freedom it can be described by a
two-parametric model or a model with more than
two parameters and additional constraints. The
difficulty is to parametrize every possible line within
the model chosen. We now give common parame-
trizations in Cartesian coordinate systems:

(I) Explicit form: y ¼ y1xþ y2.
(II) Hessian normal form: x cos y1 þ y sin y1�

y2 ¼ 0.
(III) Constrained Hessian normal form: y1xþ

y2y� y3 ¼ 0, s.t. y21 þ y22 ¼ 1.
(IV) General form with normalization: y1xþ

y2yþ y3 ¼ 0, s.t. y21 þ y22 þ y23 ¼ 1.
(V) For the sake of completeness we list other

common parametrizations of straight lines:
Two-point form, point-slope form, intercept
form and point-vector form, see [9] for details.

Model I is the most common one (Fig. 2). It cannot
cope with lines parallel to the y-axis since y1 would
be infinite. Model II describes all possible lines using
only two parameters but is nonlinear in nature.
Model III avoids nonlinearity by extension to three
parameters and a quadratical constraint. In the case
of Model II this constraint is fulfilled implicitly since
cos2 y1 þ sin2 y1 ¼ 1 holds. Model IV is also a linear
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Fig. 1. Measurement configuration.
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