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a Department of Mechanics, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29 Praha 6, Czech Republic
b McCormick Institute, Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, CEE/A135, Evanston, IL 60208, USA

a r t i c l e i n f o

Article history:
Available online 3 July 2013

Keywords:
Finite strain
Finite elements
Incremental loading
Objective stress rates
Commercial software
Sandwich structures
Orthotropic materials
Material compressibility
Buckling

a b s t r a c t

The paper briefly summarizes the theoretical derivation of the objective stress rates that are work-con-
jugate to various finite strain tensors, and then briefly reviews several practical examples demonstrating
large errors that can be used by energy inconsistent stress rates. It is concluded that the software makers
should switch to the Truesdell objective stress rate, which is work-conjugate to Green’s Lagrangian finite
strain tensor. The Jaumann rate of Cauchy stress and the Green-Naghdi rate, currently used in most soft-
ware, should be abandoned since they are not work-conjugate to any finite strain tensor. The Jaumann
rate of Kirchhoff stress is work-conjugate to the Hencky logarithmic strain tensor but, because of an
energy inconsistency in the work of initial stresses, can lead to severe errors in the cases of high natural
orthotropy or strain-induced incremental orthotropy due to material damage. If the commercial soft-
wares are not revised, the user still can make in the user’s implicit or explicit material subroutines (such
as UMAT and VUMAT in ABAQUS) a simple transformation of the incremental constitutive relation to the
Truesdell rate, and the commercial software then delivers energy consistent results.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Large deformations of solids are an important practical prob-
lem, most challenging for computational predictions [1,2]. The
main difficulty is to characterize the rate of stress change at vari-
ous points of the solid in a way that gives correct work of deforma-
tion and describes the material deformation objectively, i.e.,
independently of the rigid-body rotations material elements.

Commercial softwares such as ABAQUS, LS-DYNA, ANSYS and
NASTRAN have traditionally used an objective stress rate or incre-
ment which involves a convenient simplification that makes a cer-
tain error in energy conservation. For most applications this error
is negligible. However, the authors show that large errors, of the
order of 30–100%, can arise in certain problems of highly com-
pressible materials, or soft-in-shear highly orthotropic materials,
or materials which develop a highly orthotropic damage due to ori-
ented cracking.

This article first explains the concept of energy-consistent
objective stress rates. Then it briefly reviews several examples of
large errors that can be caused by using commercial codes with
an objective stress rate definition that is not energy consistent.

2. Review of energy-consistent objective stress rates

While the usual way to derive the objective stress rates has
been based on tensorial coordinate transformations, the variational
energy approach [3] is preferable because it also ensures energy
consistency with the finite strain tensor. Consider incremental fi-
nite strain tensors �ij relative to the initial (stressed) state at the
beginning of the load step, using the initial (Lagrangian) coordi-
nates xi (i = 1, 2, 3) of material points. A broad class of equally
admissible finite strain tensors is represented by the Doyle-Erick-
sen tensors whose second-order approximation is

�ðmÞij ¼ eij þ
1
2

uk;iuk;j �
1
2
ð2�mÞekiekj ð1Þ

where ui are the material point displacements, eij = (ui,j + uj,i)/
2 = small (linearized) strain tensor, and subscripts preceded by a
comma denote partial derivatives. The case m = 2 gives the Green-
Lagrangian strain tensor, m = 1 gives the Biot strain tensor, m = 0
gives the Hencky (logarithmic) strain tensor, m = �2 gives the Al-
mansi-Lagrangian strain tensor. The increments of nonsymmetric
small Lagrangian (or first Piola–Kirchhoff) stress sij and small stress

rðmÞij , which is symmetric and objective (an incremental second Pio-

la–Kirchhoff stress), are defined with respect to the Cauchy stress S0
ij

(true stress) in the initial state by the relations

Tij ¼ S0
ij þ sij and RðmÞij ¼ S0

ij þ rðmÞij ð2Þ
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Then the work dW done at small deformations of a material element
of unit initial volume can be expressed in two equivalent ways:

dW ¼ S0
ij þ sij

� �
dui;j ð3Þ

dW ¼ S0
ij þ rðmÞij

� �
d�ðmÞij ð4Þ

where d�ðmÞij is the arbitrary variation of incremental finite strain

tensor �ðmÞij . Since the first-order work S0
ijdui;j is canceled in the vir-

tual work equation of equilibrium by the work of loads, only the
second-order work is of interest.

The two work expressions in Eqs. (3) and (4) must be equal. Im-
pose this equality and substitute Sijdui;j ¼ Sijdeij ¼ Sij _eijDt (by virtue

of symmetry of Sij), rðmÞij d�ðmÞij � rðmÞij
_eijDt (which suffices for second-

order work accuracy in ui,j), Sijd�
ðmÞ
ij ¼ Spqð@�ðmÞpq =@ui;jÞv i;jDt and

rðmÞij ¼ bSðmÞij Dt (where vi,j Dt = dui,j, and v i ¼ _ui). Then introduce the
variational condition that the resulting equation must be valid
for any dui,j. This yields [3,5]:

bSðmÞij ¼ _Tij � Spq

@2 �ðmÞpq � epq

� �
@t @ui;j

ð5Þ

where _Tij ¼ @Tij=@t ¼ @sij=@t ¼ _Sij � Sikv j;k þ Sijvk;k ¼ limdt!0sij=dt,

Tij ¼ S0
ij þ sij, and _Sij ¼ @Sij=@t ¼material rate of Cauchy stress. Eval-

uating Eq. (5) for general m and for m = 2, one gets a general expres-
sion for the objective stress rate [3,5]:

bSðmÞij ¼ bSð2Þij þ
1
2
ð2�mÞðSik _ekj þ Sjk _ekiÞ ð6Þ

where bSð2Þij ¼ _Sij � Skjv i;k � Skiv j;k þ Sijvk;k ¼ Truesdell rate. For m = 2,
Eq. (5) reduces to the Truesdell rate. For m = 1 it gives the Biot rate.
For m = 0, Eq. (5) gives the Jaumann rate of Kirchhoff stress,

bSð0Þij ¼ _Sij � _xikSkj � Sik _xkj þ Sijvk;k ð7Þ

This rate is work-conjugate to the Hencky (or logarithmic) strain.
The Jaumann (or co-rotational) rate of Cauchy stress cannot be ob-
tained from Eq. (5) and thus is work-conjugate with no finite strain
tensor.

When different m are considered, the tangential stress–strain

relation must be written as bSðmÞij ¼ CðmÞijkl
_ekl where moduli CðmÞijkl are

associated with strain tensor �ðmÞij . They are different for different
choices of m, and are related as follows [3,5]:

CðmÞijkl ¼ Cð2Þijkl þ ð2�mÞ½Sikdjl�sym ð8Þ

½Sikdjl�sym ¼
1
4
ðSikdjl þ Sjkdil þ Sildjk þ SjldikÞ ð9Þ

Here Cð2Þijkl are the tangential moduli associated with the Green-
Lagrangian strain (m = 2), taken as a reference; Sij = current Cauchy
stress, and dij = Kronecker delta. Using Eq. (9) in each finite element
in each loading step, one can convert a black-box commercial finite
element program from one objective stress rate to another (this is
done in the user’s material subroutine of the commercial software).

3. Errors caused by energy inconsistency

Many finite element softwares utilize stress rates that are not
associated with any finite strain. Although this has been no prob-
lem for the vast majority of applications to metals, enormous er-
rors can result in some cases. Other errors can arise even if an
energy consistent stress rate is employed, because of an improper
choice of the finite strain measure. As shown in [3], m = 2 is re-
quired for all the situations where the tangential moduli are highly
orthotropic and the dominant compressive principal stress has the

direction of strong orthotropy. Thus, e.g., m = 2 needs to be used for
polymers reinforced by unidirectional or bidirectional stiff fibers
(note that, on the other hand, m = �2 is required when the maxi-
mum compressive stress is normal to the strong orthotropy direc-
tions as, e.g., for elastomeric bridge or seismic isolation bearings,
and for other principal stress ratios the correct m value lies be-
tween �2 and 2; see [4, Eq. (29)]).

This paper reviews several recent studies of this problem and
gives three examples of the error caused by the wrong use or def-
inition of the objective stress rate and the associated finite strain
tensor.

3.1. Stability of sandwich structures

A salient characteristic of sandwich plates is that the shear
strain in a soft core is important for buckling. The shear buckling
is a problem with a hundred-year controversial history. It requires
using the stability criteria for a three-dimensional continuum,
which were for half a century a subject of polemics. Although the
polemics were resolved four decades ago, some authors still dis-
pute various aspects. All the historical controversies can be traced
to the arbitrariness in choosing the finite strain measure and to
inattention to the work-conjugacy requirement. This requirement
means that the (doubly contracted) product of the incremental
objective stress tensor with the incremental finite strain tensor
must give a correct expression for the second-order work [5, chap-
ter 11].

As an example, the cylindrical buckling, which is a special case
of plate buckling, is analyzed. The short sides of the sandwich pa-
nel are clamped and the longer edges are free; Fig. 1. The core is
assumed to be linear elastic and the skins are elastic and quasi-iso-
tropic. The material properties are summarized in Table 1. For
numerical simulation, the plate is homogenized through its whole
thickness and uniform effective material properties for the com-
bined thickness of the core and skins are used. This defines a
homogeneous highly orthotropic plate [6].

Fig. 1. Plate analyzed: both edges perpendicular to the axis x1 are clamped (c) and
the longer edges are not supported (fe).

Table 1
Material properties (m – measured, c – calculated, l – lower bounds from technical
specifications [7]).

E (GPa) m (–) G (GPa)

CFRP In-plane 46m 0.3m (m12) 17.7m

(skins) Transversal 5.7c 0.24c (m13) 2.0c

H200 (core) 0.23l 0.353l 0.085l
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