
On design of element evaluators in OOFEM

M. Horák, B. Patzák ⇑, M. Jirásek
Faculty of Civil Engineering, Czech Technical University, Thákurova 7, 166 29 Prague, Czech Republic

a r t i c l e i n f o

Article history:
Available online 12 February 2014

Keywords:
Multi-physics simulations
FEM software design
Object-oriented design
Strong coupling
Damage-plastic model
Coupled heat and mass transfer

a b s t r a c t

This paper presents the advanced object-oriented design of finite element representations in a complex
multi-physics finite element environment OOFEM [1–3]. The focus is on reuse of existing single-physics
capabilities when implementing elements for coupled simulations. This has been achieved by decoupling
the description of element geometry, element problem specific capabilities, element interpolation, and
integration schemes. The individual problem specific capabilities, represented by a hierarchy of classes
derived form ElementEvaluator, can be assembled together to define an evaluator for coupled analysis.
The presented design leads to an extremely flexible implementation, with clean modular design. The
application is demonstrated on an implicit gradient formulation of a damage-plastic model and on cou-
pled heat and mass transfer.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical simulations are routinely used in research and
industry and are accepted as reliable analysis tools. However, in re-
cent years it has become clear that further progress in many scien-
tific and engineering disciplines requires understanding of various
complex multi-physics phenomena taking place at different scales
of resolution. Therefore, one of the actual challenges in software
engineering is to design efficient and modular modeling tools.
The aim of this contribution is to present an advanced object-
oriented design of a general multi-physics finite element kernel
allowing to reuse single-physics formulations in development of
coupled multi-physics problems. The available strategies for han-
dling a coupled problem composed of individual components
(applications) can be divided into the so-called strongly or weakly
coupled schemes, depending on whether consistency of internal
values across applications is required after each global time step.
In the case of a strongly coupled scheme, the consistency based
on global convergence is required, while in the weakly coupled
scheme it is not. Weakly coupled schemes are typically solved in
an iterative, staggered approach, based on solution fields exchange
between individual sub-problems. The strong coupling allows to
ensure second-order accuracy and contributes to the increased sta-
bility of the coupled algorithm, however its implementation is
more demanding. The coupling terms need to be evaluated and a
coupled system of equations has to be solved in a monolithic

fashion. The focus of this paper is on the development of strongly
coupled schemes.

The conventional designs of object-oriented finite element
codes introduce an abstraction for finite element, which maintains
the description of element geometry, properties and integration
scheme and provides services for evaluating characteristic terms,
such as the stiffness matrix or the element load vector. In more
elaborated designs, a hierarchy of classes is developed, where the
base parent element class contains only the problem-independent
description (such as element geometry) while specific functional-
ity is implemented by derived classes, representing problem-
related base classes. This scheme works well when elements are
to be solely used for a specific type of analysis, e.g. for structural
analysis.

A problem may arise when one wants to combine and reuse the
capabilities of two or more elements to obtain an element for mul-
ti-physics analysis. Multiple inheritance provides only a partial
solution, allowing to inherit problem-specific capabilities from
individual (single-physics) elements. The problem is that all attri-
butes of the common parent class Element are either duplicated
or shared (virtual base class in C++) by the derived class. Usually,
the language does not provide any mechanism for selective deci-
sions which parent class attributes are to be shared or duplicated.
The use of multiple inheritance is illustrated in Fig. 1. Here, the
StructuralElement and Heat&MassTransportElement classes repre-
sent problem-specific base classes. For example, all structural ele-
ments are derived from StructuralElement class. When an element
for coupled analysis has to be developed, one naturally wants to in-
herit from StructuralElement and Heat&MassTransportElement clas-
ses to reuse existing implementations. However, as both parent

http://dx.doi.org/10.1016/j.advengsoft.2014.01.006
0965-9978/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +420 2 2435 4501; fax: +420 2 2431 0775.
E-mail address: borek.patzak@fsv.cvut.cz (B. Patzák).

Advances in Engineering Software 72 (2014) 193–202

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2014.01.006&domain=pdf
http://dx.doi.org/10.1016/j.advengsoft.2014.01.006
mailto:borek.patzak@fsv.cvut.cz
http://dx.doi.org/10.1016/j.advengsoft.2014.01.006
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


classes are derived from Element, the attributes defined at Element
level are either all duplicated or shared. While the geometry
description should be naturally shared, the interpolation or inte-
gration description could be different for structural and heat &
mass parts. Moreover, one has to manually fix name resolution
problems with services defined on Element level.

The proposed solution consist in decoupling the common ele-
ment geometry description (represented by ElementGeometry
class) from the problem-specific functionality (represented by clas-
ses derived from Evaluator class). The particular element is then
assembled from the base ElementGeometry class and a suitable
Evaluator class. The Evaluator class evaluates the characteristic
terms of the governing equation and is parameterized by geome-
try, interpolation, and integration defined by the element. The
essential feature is the possibility to assemble individual Evaluator
classes together to form a high-level evaluator for a coupled prob-
lem. Such a design allows to naturally reuse not only the evaluator
for different type of problem-specific elements, but also the prob-
lem-specific evaluators when implementing a complex evaluator
for a multi-physics problem.

The paper starts with an introduction to the existing design of
the OOFEM code. In the next section, the proposed design support-
ing strongly coupled multi-physics simulations is presented. The
remaining sections illustrate the implementation of coupled prob-
lems using the proposed design. The presented test cases include a
typical multi-physics problem, represented by coupled heat and
mass transfer in Section 5, and a damage-plastic model with impli-
cit gradient formulation in Section 4, which illustrates how the
proposed design can be exploited in mechanical analysis dealing
with two independent primary unknown fields.

2. Overall design of OOFEM code

OOFEM is an object-oriented finite element framework devel-
oped at the Czech Technical University in Prague [1–3]. Its general
structure is shown in Fig. 2, using the UML notation. In short, ab-
stract classes are represented by rectangles. The lines with a trian-
gle mark represent the generalization/specialization relation
(inheritance), where the triangle points to the parent class. The
lines with a diamond mark represent the whole/part relation; the
diamond points to the ‘‘whole’’ class possessing the ‘‘part’’ class.
Association is represented by a solid line drawn between classes.
The details can be found in [4].

The DOF class represents a single degree of freedom (DOF). It
maintains information on its physical meaning, the associated

equation number, and a reference to the applied boundary and ini-
tial conditions. The base class DofManager represents an abstrac-
tion for an entity possessing some DOFs. It manages its DOF
collection, a list of applied loads and optionally a local coordinate
system. General services include methods for gathering localiza-
tion numbers from the maintained DOFs, computing the applied
load vector, and computing the transformation to the local coordi-
nate system. Derived classes typically represent a finite element
node or an element side possessing some DOFs. Boundary and ini-
tial conditions are represented by the corresponding classes. Clas-
ses derived from the base BoundaryCondition class, representing
particular boundary conditions, can be applied to DOFs (primary
BC), DOF managers (typically nodal load), or elements (surface
loads, Neumann or Newton boundary conditions, etc.).

The problem under consideration is represented by a class de-
rived from the EngngModel class. Its role is to assemble the govern-
ing equation and use a suitable numerical method (represented by
the class derived from the NumericalMethod class), to solve the sys-
tem of equations. The discretization of the problem domain is rep-
resented by the Domain class, which maintains the lists of objects
representing nodes, elements, material models, boundary condi-
tions, etc. The Domain class is an attribute of the EngngModel
and, in general, provides services for accessing particular compo-
nents. For each solution step, the EngngModel instance assembles
the governing equations by summing up the contributions from
the domain components. Since the governing equations are typi-
cally represented numerically in the matrix form, implementation
is based on vector and sparse matrix representations to efficiently
store components of these equations. The modular design allows
uncoupling the problem formulation, the numerical solution and
sparse storage being independent of each other.

3. Multi-physics design of element frame

The modular design has been achieved by decoupling the
description of element geometry (represented by ElementGeometry
class), interpolation (represented by FEIInterpolation class), inte-
gration (represented by IntegrationRule class), and evaluation of
problem-specific terms (represented by Evaluator class). Integra-
tion rules, represented by classes derived from the base
IntegrationRule class, define and provide a list of integration points.
Derived classes represent particular integration schemes. Individ-
ual elements can have one or more integration rules; this allows
to perform reduced or selected integration, or to apply integration
schemes to different characteristic terms. The individual elements
has to be derived from ElementGeometry and Evaluator classes and
keep the list of applied boundary contitions, integration rules,
interpolations, etc. For convenience, the ElementBase has been cre-
ated, derived from ElementGeometry and containing a lists of ap-
plied boundary conditions, interpolations, and integration rules
and keeping reference to the associated cross section and material
models. These attributes are initialized by the particular element.

Element interpolation is represented by the abstract FEIInterpo-
lation class, which defines general services for evaluation of inter-
polation (shape) functions, their derivatives, transformation
Jacobians, etc. Derived classes implement a particular interpola-
tion. The evaluation requires access to the underlying element
geometry. In our approach, the element geometry is a compulsory
parameter of every FEIInterpolation method. This allows to share a
single instance of FEIInterpolation among all elements of the same
type (static class variable in C++). Similar to the integration rule
concept, elements can use several interpolations. This is essential
for coupled simulation elements, where interpolation of individual
fields often vary, but also allows to have different approximations
for the geometry and unknown fields, for example.

Fig. 1. Traditional approach in element definition.

194 M. Horák et al. / Advances in Engineering Software 72 (2014) 193–202



Download English Version:

https://daneshyari.com/en/article/567429

Download Persian Version:

https://daneshyari.com/article/567429

Daneshyari.com

https://daneshyari.com/en/article/567429
https://daneshyari.com/article/567429
https://daneshyari.com

