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Abstract

We consider the problem of estimation of the signal-to-noise ratio (SNR) of an unknown deterministic complex phase

signal in additive complex white Gaussian noise. The phase of the signal is arbitrary and is not assumed to be known a

priori unlike many SNR estimation methods that assume phase synchronization. We show that the moments of the

complex sequences exhibit useful mean-ergodicity properties enabling a ‘‘method-of-moments’’ (MoM)-SNR estimator.

The Cramer–Rao bounds (CRBs) on the signal power, noise variance and logarithmic-SNR are derived. We conduct

experiments to study the efficiency of the SNR estimator. We show that the estimator exhibits finite sample super-

efficiency/inefficiency and asymptotic efficiency, depending on the choice of the parameters. At 0 dB SNR, the mean

square error in log-SNR estimation is approximately 2 dB2. The main feature of the MoM estimator is that it does not

require the instantaneous phase/frequency of the signal, a priori. Infact, the SNR estimator can be used to track the

instantaneous frequency (IF) of the phase signal. Using the adaptive pseudo-Wigner–Ville distribution technique, the

IF estimation accuracy is the same as that obtained with perfect SNR knowledge and 8–10 dB better compared to the

median-based SNR estimator.
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1. Introduction

We address the problem of estimation of the
signal-to-noise ratio (SNR) of a constant ampli-
tude complex phase signal [1–3] sn,

1 in additive

complex white stationary Gaussian noise,2 W n.
The noise is assumed to have zero-mean and
unknown variance s2w. The phase signal is deter-
ministic with unknown amplitude A, phase fn, and
is of the following form:

sn ¼ Aejfn . (1)
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1The subscript is the discrete-time instant, assuming a

normalized sampling period of unity.

2The signals in uppercase are random whereas those in

lowercase are deterministic.
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We assume that A is real. If A is not real, the
complex part of A can be absorbed by ejfn . This is
the typical scenario of a time-varying signal in
stationary noise. The noisy observations denoted
by X n, are given by

X n ¼ sn þW n; 0pnpN � 1, (2)

where N is the length of the random observation
sequence. It is desired to estimate the signal-to-
noise ratio, denoted by x and defined as
x ¼ A2=s2w.

The basic difference in the above model from
those commonly used [4] is that sn, the signal of

interest is deterministic but with a time-varying

spectrum. Also, many SNR estimation algorithms
[4,5] assume that the phase is known/estimated
(phase-synchronous SNR estimation). In the new
technique, we do not assume a priori knowledge/
estimate of the phase. Also, unlike many commu-
nication system applications, the phase signal is
not constrained to have a constant frequency. We
allow for arbitrary frequency variation which is
not known a priori. This is a generalized signal
definition and, is useful in many practical pro-
blems in digital communication systems [6,7],
RADAR [8], SONAR, helicopter return signal
analysis [9], aircraft flight parameter estimation
[10], etc.

The organization of the paper is as follows:
In Section 2, we state and prove the properties
of the random sequence X n that enable the
moments-based SNR estimation. We derive the
estimators for the signal power, noise variance
and logarithmic SNR (Section 3.3) and show
their statistical efficiency with respect to the
CRB. We demonstrate, experimentally that the
new estimator exhibits finite sample inefficiency/
super-efficiency, depending on the choice of the
parameters, A2 and s2w. However, it is asymptoti-
cally efficient. In Section 4, we compare the new
estimator to the median-based SNR estimator. We
consider the application to instantaneous fre-
quency estimation (Section 4.2), and show that,
in the presence of noise, the moments-SNR
estimator improves the accuracy of the adaptive
window pseudo-Wigner–Ville distribution based
instantaneous frequency (IF) estimation technique
significantly.

2. Properties of jXnj
2 and jXnj

4

We have X n ¼ Aejfn þW n, where W n is in-
dependent and identically distributed (i.i.d) com-
plex Gaussian distributed random noise of zero-
mean and variance s2w. The ensemble averages of
the sequences, X n and jX nj

k (k odd), EfX ng and
EfjX nj

kg (k odd) are functions of time, i.e., they
are non-stationary. However, the sequences jX nj

k

(k even) are wide-sense stationary. Of particular
interest are the sequences jX nj

2 and jX nj
4 which

exhibit interesting properties as shown below:
(1) The sequence jX nj

2 is wide-sense stationary.
Consider the sequence jX nj

2,

jX nj
2 ¼ A2 þ jW nj

2 þ Aejfn W �
n þ Ae�jfn W n. (3)

Its expectation, denoted by EfjX nj
2g, is given by

EfjX nj
2g ¼ A2 þ s2w. (4)

Therefore, the mean is constant. Now consider the
autocorrelation, EfjX nj

2jX mj
2g. Substituting for

jX nj
2 and jX mj

2 in the above equation and making
use of the properties that the noise is zero-mean,
the real and imaginary parts of W n are zero-mean,
i.i.d, and each of variance s2w=2, we get,3

EfjX nj
2jX mj

2gnam ¼ A4 þ 2A2s2w þ s4w (5)

and

EfjX nj
2jX mj

2gn¼m ¼ A4 þ 4A2s2w þ 2s4w. (6)

Therefore, EfjX nj
2jX mj

2g is constant. Thus, the
sequence jX nj

2 is wide-sense stationary.
(2) The sequence jX nj

2 is mean-ergodic. Consider
the sample mean of jX nj

2:

Y N ¼
1

N

XN�1
n¼0

jX nj
2. (7)

Its expectation is given by

EfY Ng ¼
1

N

XN�1
n¼0

EfjX nj
2g ¼ A2 þ s2w. (8)
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