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Abstract

A significant amount of attention has recently been focused on modeling of gene regulatory networks. Two
frequently used large-scale modeling frameworks are Bayesian networks (BNs) and Boolean networks, the latter one
being a special case of its recent stochastic extension, probabilistic Boolean networks (PBNs). PBN is a promising
model class that generalizes the standard rule-based interactions of Boolean networks into the stochastic setting.
Dynamic Bayesian networks (DBNs) is a general and versatile model class that is able to represent complex temporal
stochastic processes and has also been proposed as a model for gene regulatory systems. In this paper, we concentrate
on these two model classes and demonstrate that PBNs and a certain subclass of DBNs can represent the same joint
probability distribution over their common variables. The major benefit of introducing the relationships between the
models is that it opens up the possibility of applying the standard tools of DBNs to PBNs and vice versa. Hence, the
standard learning tools of DBNs can be applied in the context of PBNs, and the inference methods give a natural way of
handling the missing values in PBNs which are often present in gene expression measurements. Conversely, the tools for
controlling the stationary behavior of the networks, tools for projecting networks onto sub-networks, and efficient
learning schemes can be used for DBNs. In other words, the introduced relationships between the models extend the
collection of analysis tools for both model classes.
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1. Introduction

During recent years, it has become evident that
cellular processes are executed in a highly parallel
and integrated fashion and that computational
modeling approaches can provide powerful meth-
odologies for gaining deeper insight into the
operation of living cells. The modeling problem
that has received a considerable amount of
attention is the discovery of transcriptional level
interactions. With the help of recent development
in high-throughput genomic technologies, compu-
tational methods have enormous potential in the
context of model inference from real measurement
data and in practical use, such as drug discovery.

A number of different frameworks for gene
regulatory network modeling have been proposed,
ranging from differential equations too qualitative
models (for an overview, see e.g. [1]). There is a
clear conceptual difference between differential
equation and coarse-scale models. The former can
be used for a detailed representation of biochem-
ical reactions, whereas the latter emphasize funda-
mental, generic principles between interacting
components. In this context, models classes that
are both discrete-time and discrete-state are called
coarse-scale models.

Fine-scale modeling of biological interactions at
the molecular level may require some type of
differential equations. Although differential equa-
tions have successfully been used to simulate small
(known) biochemical pathways (see e.g. [2,3]),
their use in large-scale (genome-wide) modeling
has considerable limitations. First of all, those
models are computationally very demanding.
Therefore, when modeling regulatory networks with
differential equations, the model selection problem
is usually ignored and the underlying biological
system is assumed to be known. Because the model
selection is the most important computational tool
for discovering new, unknown regulatory relation-
ships from the measured data, researchers have
considered alternative modeling approaches. Also,
the available analysis tools for differential equations
are much more restricted than the ones for the
alternative model classes (see below).

So-called graphical models can overcome the
above-mentioned modeling problems, and ad-

vanced analysis tools have been developed for
them. The use of holistic, coarse-scale models is
also supported by the fact that the currently
available data is limited both in quality and the
number of samples. That is, there is no advantage
using models that are much more accurate than
the available data. Another constraint to be kept
in mind is that the modeling framework should
also be selected on the basis of the preferred goals,
i.e., to what kinds of questions are we seeking
answers. The two most often used large-scale
modeling frameworks are Boolean and Bayesian
networks (BNs). Since the Boolean network is a
special case of another commonly used model
class, probabilistic Boolean networks (PBNs), we
will consider PBNs instead of Boolean networks.

PBNs is a model class that has been recently
introduced in the context of genetic network
modeling [4]. PBN is a stochastic extension of
the standard Boolean network that incorporates
rule-based dependencies between variables but is
also stochastic in nature. The PBN model has a
strong biological motivation through the standard,
often used Boolean network model, originally
proposed by Kauffman [5,6]. The theory of PBNs
as models of genetic regulatory networks has been
developed further in several papers. In particular,
there has been interest in the control of stationary
behavior of the network by means of gene
interventions/perturbations [7], modifications of
the network structure [8], and external control [9].
Another recent paper [10] introduces mappings
between PBNs, including projections, node ad-
junctions and resolution reductions, which at the
same time preserve consistency with the original
probabilistic structure. Further, learning methods
for PBNs have been introduced in [11,12]. More
efficient learning schemes, in terms of computa-
tional complexity, but with cost of decreased
accuracy, have been studied in [13]. General
learning concepts have also been introduced in
[14], although not in the context of PBNs, but a
related setting. Kim and co-authors also show that
the Markovian gene regulatory network model' is
biologically plausible [15].

'"The dynamics of PBNs can be studied using Markov chains.
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