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a b s t r a c t

In most numerical analyses using the Finite Element Method, several quantities, such as stresses, strains,
fluid velocities and gradients, are computed at points in the interior of the solid elements, such as Gauss
integration points for instance. Nevertheless, in many applications it is necessary to extrapolate these val-
ues to nodal points. That is the case with most visualization tools and post-processors, also in programs
with auto-adaptive meshes, large deformations schemes such as Arbitrary Lagrangian–Eulerian Methods,
and in programs using the Dynamic Programming Method. A generic methodology to perform this
extrapolation in a precise and efficient way is proposed.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Most boundary value problems in Engineering may be formu-
lated with the Finite Element Method using an approach similar
to the displacement formulation [1]. In these finite elements anal-
yses, primary variables, such as displacements in equilibrium prob-
lems and water head in seepage problems, are computed at the
nodes of the elements. However, secondary or derivate variables
are computed at internal points rather than at the nodal points.
Such variables may be, for instance, the components of stresses
and strain, or the fluid velocities and gradients.

The internal points at which the secondary variables are com-
puted include the center of the element and/or the numerical inte-
gration points. The most widely adopted integration points are
those given by the Gauss–Legendre quadrature. These points are
supposed to give the best sampling position for the secondary vari-
ables [2].

In many applications, however, it is necessary to evaluate the
values of secondary variables at the nodal points. That is the case
with most graphical finite element (FE) post-processors. They use
the nodal values to compute the variables in a grid of points inside
the element, using the interpolation functions of that element. This
grid is later used to draw iso-lines or contour plots. Another impor-
tant application is related to auto-adaptive meshing. The values
computed at the Gauss points of a mesh have to be somehow
transported to the integration points of a new mesh. Nodal stress
values are necessary to compute some error measure used to de-
fine the degree of refinement necessary in a certain region of the

domain [3]. Other application which requires nodal stress values
is related to the Dynamic Programming Method (DPM). DPM
may be used to search for the critical surface in slope stability
problems, using the stress field produced (at the Gauss points) in
a previous FE analyses. These values have to be extrapolated to a
grid of points used in a minimization procedure [4–6].

Other numerical methods such as Arbitrary Lagrangian–Euleri-
an FE (ALE), the Material Point Method (MPM) and its generaliza-
tion (GIMP) require computation of derivate variables at nodal
points. In ALE, convective terms such as spatial derivatives need
to be defined as a continuous field over the domain. For instance,
stresses are computed at the integration points, and the stress field
is generally discontinuous across element edges. In this case the
stresses at the integration points are extrapolated using a least
square approximation to obtain the nodal stresses [7]. The MPM
uses a background calculation grid where any variable can be ex-
pressed as a piecewise continuous function by using standard fi-
nite element shape functions. In each time step positions,
velocities, stresses and strains are updated to define a new state
in a deformed background grid. This background grid is then dis-
carded and a new one is created for the next time step. At the start
of the next step, the velocities must be calculated by extrapolation
from the material points to the new grid. Since there are always
more material points than grid vertices, this extrapolation is
achieved using a Least Square Method [8]. This extrapolation pro-
cedure in MPM requires inversion of a large mass matrix. For a
more efficient algorithm, a local extrapolation could be used.

Mathematically, values at the nodal points could be evaluated
directly, i.e., in the same way as those computed at the Gauss
points. However, points close the border of a finite element are
the worst sampling points and might produce serious errors, since
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equilibrium is satisfied only in an average sense when using weak
formulations (displacement approach). The existence of optimal
sampling points has been suggested and investigated numerically
and mathematically by many authors [9–11]. These points might
coincide with the ones given by Gauss–Legendre quadrature in
some elements, but this is not always the case. If these optimal
points or other points with good overall accuracy are known, then
it is intuitive that some extrapolation from these values to the no-
dal points, plus some smoothing procedure such as averaging,
might give more accurate solutions than those obtained directly
from the displacement formulation. This idea produced several no-
dal stress recovery algorithms such as the original work proposed
by Hinton and Campbell [12]. More details may be found in [13].

Stress recovery procedures may be applied in a local (element)
area or globally, i.e., over the whole finite element mesh [14,15].
Global methods are considerably more costly and most efforts
have been concentrated in refining local procedures. Among
these, perhaps the most popular is the Superconvergent Patch
Recovery (SPR) method introduced by Zienkiewicz and Zhu
[16,17]. In this technique, the smoothed stresses corresponding
to a fixed nodal point are obtained from a polynomial expansion
defined over a ‘‘patch of elements’’ sharing the node. This polyno-
mial is determined from a minimum square fitting using the cal-
culated stresses at the surrounding superconvergent points.
Usually, the superconvergent points are the same as the Gauss
integration points and the polynomial expansion has the same
complete order as the shape functions. Contrary to the original lo-
cal methods focused in an element rather than a patch of ele-
ments, the SPR method requires the extra identification of the
elements and the corresponding superconvengent points sur-
rounding the particular nodal point for which the stresses are de-
sired. Moreover, a system of equations must be solved for each
nodal point individually. Therefore, in the present paper, the
authors propose a method that enhances and generalizes the local
recovery process over an element. The proposed method can be
eventually modified to work over a patch of elements although
this extension is not presented here.

Local recovery procedures, such as proposed by Hinton and
Campbell [12], work only for certain element types and particular
cases, as for instance, when the number of Gauss points is greater
or equal to the number of nodal points. On the other hand, it is not
uncommon the use of reduced integration in many engineering
applications. In fact, eight node quadrilateral elements (Q8 Seren-
dipity type element), with 2 � 2 Gaussian integration (four points),
are perhaps the most widely used in two-dimensional problems.
Also it is common to use brick elements of 20 nodes with
2 � 2 � 2 integration in three-dimensional (3D) finite element
applications. If someone wishes to extrapolate the stress compo-
nents computed at the four Gauss points of a Q8 element to its

nodes, an efficient scheme should be used, since the problem is
underdetermined. This problem is illustrated in Fig. 1.

Therefore, the main objective of this paper is to present a local
extrapolation methodology, which might be generically applied to
quantities computed at any number of internal points of finite ele-
ments with different shapes. The proposed scheme shows accu-
racy, efficiency and it can be easily implemented in any
computer program.

2. Extrapolation methodology

In some cases, as depicted in Fig. 1, there might be infinite
combinations of nodal values that produce, upon interpolation,
the desired set of computed values at Gauss integration points.
Therefore, the extrapolation of Gauss point values to nodal val-
ues may be underdetermined. Yet, it is possible to devise extrap-
olation schemes, which fit the sampling points and keep a
smooth trend over the whole element domain. For the develop-
ment of such a scheme the following requirements should be
fulfilled:

i. Extrapolation should be independent of element type or
stress state, i.e., it should be applicable to any type of ele-
ment either in two or three dimensions (2D or 3D).

ii. The scheme should be valid for any number of nodes and
any number of internal sampling points (i.e. number of inte-
gration points). The number of nodes could be greater, equal
or less than sampling points.

iii. The scheme should minimize the error when the extrapo-
lated nodal point values are interpolated back to the sam-
pling points.

iv. The procedure should keep a smooth variation inside the
element and not produce spurious nodal values.

In the following let m denote the number of sampling (Gauss)
points and n denote the number of nodal points. By the way, the
sampling points may also lie along the sides of the elements. Con-
dition (ii) will be divided in two general cases: (1) m P n; or (2)
m < n. These cases are treated separately in the next sections.

In the derivation below, it is used the concept of generalized in-
verse matrix attributed to Moore and Penrose, see e.g. [18,19]. This
concept indicates that for a given non-square matrix A, its general-
ized inverse A+ can be calculated by the following equation, when
the number of lines is greater than the number of columns:

Aþ ¼ ðAT AÞ
�1

AT
; ð1Þ

and by the following expression when the number of columns is
greater than the number of rows:

Aþ ¼ ATðAATÞ
�1
: ð2Þ

In addition, the sample points values are denoted by wi and the
resultant nodal values are denoted by vi.

2.1. Case 1: number of sampling points greater than or equal to the
number of nodes (m P n)

For the sake of generality, let w denote the value of any quantity
evaluated at any point with natural coordinates (n, g, f) inside a fi-
nite element. This value can be approximated by a weighted aver-
age of nodal values vi, using the interpolation functions of the
element. This approximation is denoted by �w and is expressed in
the following equation:

�wðn;g; fÞ ¼
Xn

i¼1

Niðn;g; fÞv i ð3Þ
Fig. 1. Extrapolation of internal quantities to nodes in a Q8 element.
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