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a b s t r a c t

Bat inspired (BI) algorithm is a recently developed metaheuristic optimization technique inspired by
echolocation behavior of bats. In this study, the BI algorithm is examined in the context of discrete size
optimization of steel frames designed for minimum weight. In the optimum design problem frame mem-
bers are selected from available set of steel sections for producing practically acceptable designs subject
to strength and displacement provisions of American Institute of Steel Construction-Allowable Stress
Design (AISC-ASD) specification. The performance of the technique is quantified using three real-size
large steel frames under actual load and design considerations. The results obtained provide a sufficient
evidence for successful performance of the BI algorithm in comparison to other metaheuristics employed
in structural optimization.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A steel frame refers to a type of structure where vertical steel
columns and horizontal beams generally selected from I-shaped
steel sections are arranged in the form of a rectangular grid to
support lateral and vertical loads acting on a building. The lateral
stability of such systems is provided by flexural stiffness of beams
and columns if beams are rigidly connected to columns at joints.
Alternatively, moment-free connections can be used, in which case
the framework must be stiffened with a full-bracing system that
behaves like a vertical truss throughout the height of the building
to transmit lateral forces to the ground. Different types of floor
slabs can be adopted in such systems in composite or non-compos-
ite forms. A composite floor consists of a high-strength profiled
steel deck with concrete topping cast and is more preferable for
multi-story buildings due to high speed of construction.

Both safety and economy have to be considered while designing
a steel frame. The common practice followed by a practicing engi-
neer is to observe structural safety always, while an economical
design is pursued meanwhile using intuition, experience and a
trial-and-error based procedure. However, despite the best effort
of the designer, the optimum design, which leads to minimum
weight or cost of the structure, can be reached at almost no times.
Further, sometimes a design produced this way may lead to very
uneconomical solutions especially when the design is governed
by displacement constraints. Hence, it is essential that the design

process of steel frames be implemented in conjunction of com-
puter-aided numerical algorithms that are automated to achieve
optimum design of such structures.

In the past optimum design of structures was overwhelmingly
carried out using optimality criteria (OC) and mathematical pro-
gramming (MP) based methods [1]. Despite strong mathematical
backgrounds and remarkable speed of convergence to the opti-
mum, these methods have found scarce applications in discrete
size optimization problems of steel frames. In the aforementioned
problems, a set of steel sections selected from available section
tables are initially collected in a design pool. Each steel section is
assigned a sequence number that varies between one to the total
number of sections in the list. The selection of steel sections for
member groups is carried out using these numbers. This selection
should be performed in such a way that a steel frame has the
minimum weight or cost while behavior and performance of the
structure is within the limitations described according to service-
ability and strength requirements of a chosen code of design prac-
tice. The need for selecting member sizes from a list of ready
sections as well as gradient-based nature of OC and MP algorithms
hampers a direct application of these methods to such problems
encountered in real life. Fortunately, in the last two decades a
number of computational methods, commonly referred to as meta-
heuristics in the literature, have been developed as powerful tools
that can effectively deal with discrete structural optimization
problems at the expense of increased computational cost [2–10].
These novel and innovative approaches are derivative-free
methods and make use of ideas inspired from the nature. There
are a large number of metaheuristic techniques available in the
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literature nowadays. The state-of-the-art review of metaheuristics
in structural design optimization is outlined in several excellent
review papers, such as Lamberti and Pappalettere [11], Saka [12],
and Saka and Dogan [13].

One recent addition to metaheuristic algorithms is the bat-in-
spired (BI) search. The idea behind this technique is to imitate echo-
location behavior of bats. In simple words, echolocation is used to
refer to the way bats use to navigate their surroundings. Bats get
to find their directions and detect prey and different types of objects
around them even in complete darkness. They achieve this by emit-
ting calls out to the environment and listening to the echoes that
bounce back from them. The echolocation behavior of bats was
turned into a numerical algorithm by Yang [14] for solving optimi-
zation problems. A verification of this algorithm was conducted
using several standard test functions of unconstrained optimization
in Yang [14,15]. Besides, the technique was successfully applied to
some benchmark constrained engineering optimization problems
in Yang and Gandomi [16] and Gandomi et al. [17].

In Hasançebi et al. [18] a thorough reformulation of the BI algo-
rithm was proposed for sizing optimization of steel trusses. In this
study, the BI algorithm was scrutinized in the context of discrete
sizing optimization of steel frames. It should be underlined that
the latter is seemingly a more challenging optimization problem.
The reason is that truss members carry only one type of force (i.e.
axial force), and a discrete optimization process can be carried
out for these systems using a well-ordered section list generated
by sorting steel sections according to their cross-sectional areas.
On the other hand, beams and columns in a steel framework are ax-
ial–flexural members. The governing behavior of a frame member is
determined by relative magnitudes of axial force and bending mo-
ment carried by the member at a time. When steel sections are
sorted according to a chosen sectional property, i.e. cross-sectional
area or moment or inertia, there is no guarantee that the next sec-
tion in the list is stronger for some frame members. This introduces
a great deal of disorder in the list, and makes the search process
more complicated for an algorithm. Hence, aside from presenting
a new application of the BI algorithm, this study intends to investi-
gate efficiency of this technique in more complicated problems of
structural optimization. In the study strength and displacement
provisions of steel frames are imposed according to the provisions
of AISC-ASD specification [19]. The numerical performance of the
BI algorithm is tested and verified using three real-size design
examples. The numerical results evince that the BI algorithm per-
forms very efficiently for this class of problems and produces im-
proved results as compared to other techniques of metaheuristics.

2. Optimum design of steel frames as to AISC-ASD

For a steel structure consisting of Nm members that are
collected in Nd design groups (variables), the optimum design
problem according to AISC-ASD [19] code yields the following dis-
crete programming problem, if the design groups are selected from
steel sections in a given profile list.

The objective is to find a vector of integer values I (Eq. (1)) rep-
resenting the sequence numbers of steel sections assigned to Nd

member groups

IT ¼ ½I1; I2; . . . ; INd
� ð1Þ

to minimize the weight (W) of the frame

W ¼
XNd

i¼1

qiAi

XNt

j¼1

Lj ð2Þ

where Ai and qi are the length and unit weight of the steel section
adopted for member group i, respectively, Nt is the total number

of members in group i, and Lj is the length of the member j which
belongs to group i.

The members subjected to a combination of axial compression and
flexural stress must be sized to meet the following stress constraints:

if
fa

Fa
> 0:15;

fa

Fa
þ Cmxfbx

1� fa
F 0ex

� �
Fbx

þ Cmyfby

1� fa
F 0ey

� �
Fby

2
4

3
5� 1:0 6 0 ð3Þ

fa

0:60Fy
þ fbx

Fbx
þ fby

Fby

� �
� 1:0 6 0 ð4Þ

if
fa

Fa
6 0:15;

fa

Fa
þ fbx

Fbx
þ fby

Fby

� �
� 1:0 6 0 ð5Þ

If the flexural member is under tension, then the following for-
mula is used instead:

fa

0:60Fy
þ fbx
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þ fby

Fby

� �
� 1:0 6 0 ð6Þ

In Eqs. (3)–(6), Fy is the material yield stress, and fa = (P/A) represents
the computed axial stress, where A is the cross-sectional area of the
member. The computed flexural stresses due to bending of the
member about its major (x) and minor (y) principal axes are denoted
by fbx and fby, respectively. F 0ex and F 0ey denote the Euler stresses about
principal axes of the member that are divided by a safety factor of
23/12. Fa stands for the allowable axial stress under axial compres-
sion force alone, and is calculated depending on elastic or inelastic
bucking failure mode of the member using Formulas 1.5-1 and
1.5-2 given in AISC-ASD [19]. The allowable bending compressive
stresses about major and minor axes are designated by Fbx and Fby,
which are computed using the Formulas 1.5-6a or 1.5-6b and
1.5-7 given in AISC-ASD [19]. It is important to note that while cal-
culating allowable bending stresses, a newer formulation (Eq. (7)) of
moment gradient coefficient cb given in ANSI/AISC 360-05 [20] is
employed in the study to account for the effect of moment gradient
on lateral torsional buckling resistance of the elements,

cb ¼
12:5Mmax

2:5Mmax þ 3MA þ 4MB þ 3MC
Rm 6 3:0 ð7Þ

where Mmax, MA, MB and MC are the absolute values of maximum,
quarter-point, midpoint, and three-quarter point moments along
the unbraced length of the member, respectively, and Rm is a coef-
ficient which is equal to 1.0 for doubly symmetric sections. Cmx and
Cmy are the reduction factors, introduced to counterbalance overes-
timation of the second-order moments by the amplification factor
1� fa=F 0e
� �

. For unbraced frame members, they are taken as 0.85.
For braced frame members without transverse loading between
their ends, they are calculated from Cm = 0.6 � 0.4(M1/M2), where
M1/M2 is the ratio of smaller end moment to the larger end moment.
For braced frame members having transverse loading between their
ends, they are determined from the formula Cm ¼ 1þ wðfa=F 0eÞ based
on a rational approximate analysis outlined in AISC-ASD [19] Com-
mentary-H1, where w is a parameter that considers maximum
deflection and maximum moment in the member.

For the computation of allowable compression and Euler stres-
ses, the effective length factors (K) are required. For beam and
bracing members, K is taken equal to unity. For column members,
alignment charts furnished in AISC-ASD [19] can be utilized. In this
study, however, the effective length factors of columns in braced
and unbraced steel frames are calculated from the following
approximate formulas developed by Dumonteil [21], which are
accurate to within about �1.0% and +2.0% of the exact results [22]:

For unbraced members:

K ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:6GAGB þ 4ðGA þ GBÞ þ 7:5

GA þ GB þ 7:5

s
ð8Þ
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