
Application of service oriented architecture to finite element analysis

R.I. Mackie ⇑
Civil Engineering, School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN, UK

a r t i c l e i n f o

Article history:
Received 23 March 2012
Received in revised form 26 June 2012
Accepted 4 July 2012
Available online 1 August 2012

Keywords:
Component-oriented
Object-oriented
Distributed computing
Service oriented architecture
Finite elements
Microsoft.NET

a b s t r a c t

This paper examines the application of service oriented architecture (SOA) in finite element analysis. SOA
is a technology for designing and developing interoperable services. These services can reside on the
same computer or, more commonly, on distributed computers. The paper demonstrates how SOA can
be used within the context of scientific computing. The implementation and application of SOA to equa-
tion solvers and finite element analysis is described. There are advantages in terms of software engineer-
ing, as it facilitates the separation of areas of complexity. SOA can be used on standalone computers,
intranets and on the internet. The data transfer costs are examined. It is shown that SOA principles
can be used to design applets that make use of finite element analysis and a simple example of this is
described.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The finite element method has seen many developments over
its history, both in terms of finite element technology itself, and
in terms of software engineering. There are a multitude of different
finite element types, with new ones being developed all the time.
Then there are developments in the associated technologies such
as equation solution, optimisation, mesh generation. As well as
the standard finite element mesh approach, there are other
variations such as meshless methods, generalised finite elements,
isogeometric elements. This latter technology is being developed
to enable better integration between finite elements and CAD
programmes [1]. This is just one example of developments in the
software itself. Finite element programs are all coupled with
graphical user interfaces, and within the applications themselves
there can be a variety of features, such as modules to link the
results of finite element analysis to concrete reinforcement design.
Computers themselves have advanced by a great amount, so every-
day computers have large amounts of memory and multiple pro-
cessors. Moreover, all computers are linked together via local
intranets and the internet. So distributed and parallel computing
are no longer specialist areas, but are completely mainstream.
Indeed, with the increased interest in cloud computing distributed
computing is likely to become even more relevant.

All these capabilities introduce additional complexity. Over the
last 20 years or so a large number of researchers have studied the
application of object-oriented programming methods to finite
element software development. Most of this work has been carried

out in C++, though other languages such as Java and C# have been
used as well. While object oriented programming offers a number
of advantages in handling complexity, it is no panacea and as class
libraries increase in size problems can arise. The next development
in programming was to use component oriented programming.
This works together with the object oriented approach, but is bet-
ter at isolating complexity.

The next step in programming development has been service-
oriented architecture (SOA), and this paper will consider the rele-
vance and application of SOA to finite element analysis. The work
described herein used Windows Communication Foundation
(WCF) and .NET, though the principles elucidated are generally
applicable to SOA. Following a review of software engineering
development in finite elements, the ideas of SOA will be introduced
using equation solvers. Then the application of the SOA approach
to finite element software design will be looked at in detail.

Any software development needs to be assessed for its impact
in the following areas:

� Speed of execution.
� Program design.
� Software capabilities.

The application of SOA will be assessed in each of these areas, in
particular the opportunities it gives for enhancing and increasing
the use of finite element analysis.

2. Literature review

It is over 20 years since object oriented programming was first
applied to finite element analysis. The early papers focused on

0965-9978/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.advengsoft.2012.07.002

⇑ Tel.: +44 1382 384702; fax +44 1382 384389.
E-mail address: r.i.mackie@dundee.ac.uk

Advances in Engineering Software 52 (2012) 72–80

Contents lists available at SciVerse ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://dx.doi.org/10.1016/j.advengsoft.2012.07.002
mailto:r.i.mackie@dundee.ac.uk
http://dx.doi.org/10.1016/j.advengsoft.2012.07.002
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


straightforward implementations of finite elements in an object
oriented language [2,3], with separate classes being created for
degrees of freedom, nodes, elements, etc. One of the goals of this
work was to produce a new generation of tools to develop easily
maintainable and extensible finite element software systems [4].
Initially there were concerns over the computational efficiency of
object-oriented programs. Part of this concern was a result of some
of the early work being carried out using Smalltalk. However, the
move to C++ largely overcame these objections [5]. While C++
continues to be widely used, other languages and environments,
like Java and C# have been used. These languages use just-in-time
(JIT) compilers and can be a little slower than C++. However,
Nikishkov et al. [6] have reported favourably on the computation
speed of Java, and Mackie [7,8] has reported that the speed costs
of using C# compared to C++ are limited. The primary advantage
afforded by object-orientation (OO) is its richer data modelling
capabilities compared to traditional languages. Accordingly, OO
has been applied to a number of complex algorithms [9–12].

While object-orientation yields many advantages [13], it has
limitations in dealing with complexity. This becomes particularly
apparent as class libraries increase in size. Accordingly object-ori-
entation has been complemented with component oriented design
[14]. OO relies heavily on inheritance and polymorphism, compo-
nent oriented design uses interfaces and object composition [15].
This tends to lead to more flexible designs and smaller class hier-
archies. Dolenc [16] applied the component oriented approach to
finite element software. Both Java and the .NET framework allow,
and indeed encourage, component oriented software design.

The reason that component orientation presents a step forward
in terms of software design is that it facilitates the logical separa-
tion of areas of complexity. The need to do this was recognised
quite early on in the application of OO to finite elements. Archer
et al. [17] sought to achieve flexibility and extendibility and a
key step in achieving this goal was the separation of tasks, using
distinct objects to carry out separate tasks. Dubois-Pelerin and
Pegon [10] used a separate class for each problem type and this
class worked on a domain class. Doing this separated out the
problem specific aspects from those related to the domain (which
represented the discretised model). Patzak and Bittnar [18]
describe the programming principles behind their finite element
framework, again a crucial part of the design was the separation
of tasks.

Perhaps the most important developments in the computer
architecture on which programs run now is that most computers
are multi-core, and all computers are linked together on intranets
and the internet. This means that parallel and distributed com-
puting is now no longer a specialised activity, but is an integral
part of mainstream computing [19]. The most widely used tech-
nologies are MPI [20] and OpenMP [21]. These are fairly low-level
systems and this is a disadvantage in terms of software engineer-
ing. However, there are a number of interfaces from object-ori-
ented systems like Java and .NET for MPI [22–25]. The .NET
framework was developed specifically with distributed comput-
ing in mind and the latest version includes the Task Parallel Li-
brary (TPL) [26]. This facilitates parallel programming, enabling
the programmer to focus on the tasks to be carried out, rather
than the threads on which they run. This emphasis on tasks is re-
flected in work in other technologies such as OpenMP [27] and
Java [28]. Distributed computing is relevant to using clusters of
computers and to internet based computing [29–32]. Work by
the current author has shown how component oriented program-
ming and assist with the design and deployment of distributed
numerical applications [33].

Just as the component oriented approach complimented the ob-
ject-oriented approach, and addresses some of the short-comings,

service-oriented-architecture (SOA) is the next step in develop-
ment. According to [34] the four tenets of SOA are:

� Service boundaries are explicit.
� Services are autonomous.
� Services share operational contracts and data schema, not type-

specific metadata.
� Services are compatible based on policy.

This means that services are exposed purely as interfaces,
should reveal nothing about implementation detail and should
be completely self-describing. The next section will describe
how this works in practice for Windows Communication Founda-
tion (WCF). The outcome is that clients should be able to use a
service without being concerned about its location or implemen-
tation. So the service, as far as the client is concerned, is entirely
described by the operations contract (which defines what the ser-
vice can do) and the data contracts (which define the data re-
quired). All this is aimed at minimising coupling between client
and service.

Now since its inception, .NET has had remote objects, and
these can be accessed through interfaces. Indeed, this is gener-
ally the best way to expose a remote object. So in some ways
WCF formalises this use of interfaces. However, the key differ-
ence is that in remoting remote objects are treated just like local
objects. This has advantages, but also drawbacks. The drawbacks
include the fact that with remote objects issues such as lifecycle
management, security and reliability become important. WCF is
designed to handle these and other issues. With remote objects,
the client is using the interface to manipulate an object that
might exist on a remote computer. In WCF the client is accessing
a service only. The service has full control over what happens
the other side of the boundary. The interface is a contract of
what the service will provide. While WCF is a .NET technology,
WCF services can be accessed from other environments. So a
Java program running under Linux can access a WCF service run-
ning under Windows.

WCF is a technology with its roots in business computing, so
one might ask how relevant is this to engineering computing?
There are two answers to this. First, at the most basic level a dis-
tributed computing technology only needs to enable computation
to be executed on another computer and to transfer and receive
the associated data. This is essentially what MPI does. Remoting al-
lows this to be done for .NET. WCF also allows this to be done, as do
various Java technologies. So there is no inherent reason for not
using something like WCF. What matters is how effectively it can
do this task in terms of engineering computing. Secondly, issues
such as reliability and security need to be considered. WCF is a
complete framework and takes account of these matters. Engineer-
ing design and analysis is an increasingly global and distributed
exercise. So there are good reasons for at least considering the
applicability of WCF.

WCF is relatively new, and since its roots are more in general
business computing there has so far been limited use of WCF in
scientific or engineering computing. Exceptions have been in
the area of distributed information systems. One example is work
by Chang et al. [35] who used WCF on distributed 3D-GIS . They
cited the advantage of WCF being that it brought together several
communication mechanisms, including .NET, DCOM, Message
Queuing and Web Services. Chengping et al. [36] have done work
on the application WCF in the water industry, and Yang et al. [37]
have used it for borehole logging data obtained from geological
investigations. Stopper and Gastermann [38,39] have worked on
the use of WCF in information systems in the manufacturing
environment.

R.I. Mackie / Advances in Engineering Software 52 (2012) 72–80 73



Download English Version:

https://daneshyari.com/en/article/567567

Download Persian Version:

https://daneshyari.com/article/567567

Daneshyari.com

https://daneshyari.com/en/article/567567
https://daneshyari.com/article/567567
https://daneshyari.com

