
A novel scheme for large deflection analysis of suspended cables made of linear
or nonlinear elastic materials

Najib Bouaanani ⇑, Mohamed Ighouba
Department of Civil, Geological and Mining Engineering, Ecole Polytechnique de Montréal, Montréal, QC, Canada H3C 3A7

a r t i c l e i n f o

Article history:
Received 16 October 2010
Received in revised form 20 June 2011
Accepted 21 June 2011
Available online 23 July 2011

Keywords:
Suspended cables
Nonlinear elasticity
Finite differences method
Large deflections
Numerical methods
Nonlinear least squares problems
Neo-Hookean materials
Rubber-like materials
Tension structures
Poisson’s effect

a b s t r a c t

This paper presents a new approach to investigate the static response of horizontal and inclined sus-
pended cables with deformable cross-section, made of general linear or nonlinear elastic materials,
and subjected to vertical concentrated and distributed loads. The proposed technique also includes large
sag and extensibility effects, and is based on an original finite difference scheme combined to a nonlinear
least squares numerical solution. The mathematical formulation is developed for various loading cases,
and an innovative computational strategy is used to transform the resulting nonlinear system of equa-
tions into a scaled nonlinear least squares problem. The numerical scheme is programmed and its appli-
cation illustrated through examples highlighting the effects of coupling between the tension in a cable
and the deformation of its cross-section as well as the use of cables made of neo-Hookean materials.
The results obtained are in excellent agreement with analytical solutions when available. The proposed
technique can be easily programmed and constitutes a valuable tool for large deflection analysis of sus-
pended cables made of nonlinear elastic materials.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Cables are widely used as structural components and the inves-
tigation of their structural response has attracted numerous
researchers for many centuries [1–3]. Most of these contributions
accounted only for simplified loading cases and focused on validat-
ing the parabolic or catenary cable solutions amenable to hand
calculations. With the advent of digital computers, advanced
analytical and numerical techniques emerged as practical solutions
to study cables under various loading cases, such as in [3–13] and
more recently in [14–22]. Existing finite element software pack-
ages that solve cable problems generally use truss or beam ele-
ments including large displacement capabilities, i.e. geometrical
nonlinearity. Such elements are highly effective solutions that
avoid recourse to cumbersome cable modeling using 3D solid finite
elements. However, the truss and beam formulations programmed
into readily available finite element software are generally re-
stricted to linear elastic Hookean materials, and do not allow for
straightforward implementation of general constitutive nonlinear
material models to account for hyper-elastic or rubber-like materi-
als. Furthermore, these classical formulations do not account for

coupling between the tension in a cable and the deformation of
its cross-section which is assumed to remain rigid as the loads
are applied. In this paper, we propose alternative finite difference
solutions that waive these restricting assumptions. Finite differ-
ence modeling of cables was indeed shown very effective in many
cable applications such as transmission lines, marine cables and
cable-supported bridges [23–32]. Such studies showed that finite
difference schemes can be easily programmed to yield robust
numerical solutions and that their use is particularly justified
when discretized nondimensional equations are to be solved sys-
tematically for problem parameters varying over a wide range.
However, the available finite difference formulations for cables
also employ a simplifying rigid cross-section kinematic assump-
tion and are limited to linear Hookean materials.

The objective of this work is to develop an original and practical
finite difference scheme to investigate the static response of hori-
zontal and inclined suspended cables with deformable cross-sec-
tion, made of general linear or nonlinear elastic materials, and
subjected to most common loads of gravitational type, generally
originating from self-weight, ice accumulation or various attach-
ments. The proposed formulation also includes large sag and
extensibility effects that were shown sufficiently important to in-
clude in the analysis of cables when large spans and/or significant
loads are involved such as for applications described in [33–38].
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2. Mathematical and numerical formulations

2.1. Cable static response under self-weight

2.1.1. Mathematical formulation
In this section, we derive the Cartesian equations expressing the

static profile of a suspended cable hanging under its self-weight as
illustrated in Fig. 1. Considering a Cartesian system of axes (x,y,z),
the cable is assumed to deflect within the plane (x,z). We note
(xA,yA,zA) and (xB,yB,zB) the coordinates of the two cable supports
A and B, respectively. To alleviate the notation, we may assume
without loss of generality that support A coincides with the origin
of axes, i.e. xA = yA = zA = 0. The chord connecting the supports A
and B makes an angle h with the x-axis. We note eS the unstrained
arc-length of the cable, and emg its weight per unit unstrained arc-
length with g representing the gravity constant. The Lagrangian
coordinate of a point of the cable in its unstrained configuration
is denoted by es. The static strained geometrical configuration is ob-
tained when the cable deforms under self-weight. We note bS the
strained arc-length of the cable, bmg the weight of the cable per unit
strained arc-length and bs the Lagrangian coordinate of a point of
the cable in the strained configuration.

Fig. 1a illustrates the strained geometrical configuration of the
suspended cable and the forces applied to an elementary segment
of the cable with infinitesimal arc-length dbs. Let bF denote the ten-
sion force at a point with Lagrangian coordinate bs and Cartesian
coordinate bx. At coordinates bs þ dbs and x + dx, the tension force
is bF þ dbF . The horizontal and vertical projections of the cable ten-
sions bF and bF þ dbF are designated by bH; bV ; bH þ dbH and bV þ dbV as
illustrated in Fig. 1a. The equilibrium of the elementary segment
yields

dbH ¼ 0 ð1Þ

dbV
dbx ¼ � bmg

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ dbz

dbx
� �2

s
ð2Þ

bH dbz
dbx � bV ¼ 0 ð3Þ

Eq. (1) shows that horizontal tension bH is constant along cable arc-
length, and the last two relations yield

bHbz00 þ bmg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ bz 0� �2

q
¼ 0 ð4Þ

where the notations bz0 ¼ dbz=dbx and bz00 ¼ d2bz=dbx2 are used to allevi-
ate the text. The tension force bF can be decomposed as

bF ¼ bH cos b/ þ bV sin b/ ¼ bH dbx
dbs þ bV dbz

dbs ð5Þ

in which b/ is the angle between the tangent to the cable profile and
a horizontal axis as illustrated in Fig. 1a. Using Eqs. (1), (2), (3) and
(5), we obtain

bF ¼ bH dbx
dbs þ bH dbz

dbx
� �

dbz
dbs ¼ bH

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðbz 0Þ2q

ð6Þ

The masses em and bm are distributed per unit unstrained and
strained arc-lengths, respectively, and are related by

bm ¼ em des
dbs ð7Þ

and axial deformation can be characterized along cable arc-length
by

dbs � des
des ¼ CðbsÞ ð8Þ

in which

bs ¼ bF
EA
¼
bH

EA

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðbz0Þ2q

ð9Þ

and where A is the area of the cable cross-section, E is the modulus
of elasticity and C is a general constitutive function characterizing
cable axial deformation. For example, C can be expressed in the sim-
ple case of a Hookean material as

CðbsÞ ¼ bs ð10Þ

More complex expressions of C will be investigated later in Section 3
of this paper.

Using Eq. (8), Eq. (7) becomes

bm ¼ em
1þ CðbsÞ ð11Þ

Substituting Eqs. (11) and (6) into Eq. (4) yields the nonlinear differ-
ential equation governing the static profile of the cable including
extensibility and large sag effects

(a) (b)

Fig. 1. Static response of a suspended cable: (a) Unstrained and strained geometrical configurations and equilibrium of an elementary segment of the cable; (b) Finite
difference mesh.
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