The role of aspirin dose on the prevention of preeclampsia and fetal growth restriction: systematic review and meta-analysis

Stéphanie Roberge, PhD; Kypros Nicolaides, MD; Suzanne Demers, MD, MSc; Jon Hyett, MD; Nils Chaillet, PhD; Emmanuel Bujold, MD, MSc

BACKGROUND: Preeclampsia and fetal growth restriction are major causes of perinatal death and handicap in survivors. Randomized clinical trials have reported that the risk of preeclampsia, severe preeclampsia, and fetal growth restriction can be reduced by the prophylactic use of aspirin in high-risk women, but the appropriate dose of the drug to achieve this objective is not certain. **OBJECTIVE:** We sought to estimate the impact of aspirin dosage on the prevention of preeclampsia, severe preeclampsia, and fetal growth restriction.

restriction.

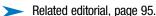
STUDY DESIGN: We performed a systematic review and meta-analysis of randomized controlled trials comparing the effect of daily aspirin or placebo (or no treatment) during pregnancy. We searched MEDLINE, Embase, Web of Science, and Cochrane Central Register of Controlled Trials up to December 2015, and study bibliographies were reviewed. Authors were contacted to obtain additional data when needed. Relative risks for preeclampsia, severe preeclampsia, and fetal growth restriction were calculated with 95% confidence intervals using random-effect models. Dose-response effect was evaluated using meta-regression and reported as adjusted R^2 . Analyses were stratified according to gestational age at initiation of aspirin (≤ 16 and >16 weeks) and repeated after exclusion of studies at high risk of biases.

RESULTS: In all, 45 randomized controlled trials included a total of 20,909 pregnant women randomized to between 50-150 mg of aspirin daily. When aspirin was initiated at \leq 16 weeks, there was a significant reduction and a dose-response effect for the prevention of preeclampsia (relative risk, 0.57; 95% confidence interval, 0.43–0.75; P < .001; R^2 , 44%; P = .036), severe preeclampsia (relative risk, 0.47; 95% confidence interval, 0.43–0.75; P < .001; R^2 , 44%; P = .036), severe preeclampsia (relative risk, 0.47; 95% confidence interval, 0.26–0.83; P = .009; R^2 , 100%; P = .008), and fetal growth restriction (relative risk, 0.56; 95% confidence interval, 0.44–0.70; P < .001; R^2 , 100%; P = .044) with higher dosages of aspirin being associated with greater reduction of the 3 outcomes. Similar results were observed after the exclusion of studies at high risk of biases. When aspirin was initiated at >16 weeks, there was a smaller reduction of preeclampsia (relative risk, 0.81; 95% confidence interval, 0.66–0.99; P = .04) without relationship with aspirin dosage (R^2 , 0%; P = .941). Aspirin initiated at >16 weeks was not associated with a risk reduction or a dose-response effect for severe preeclampsia (relative risk, 0.85; 95% confidence interval, 0.64–1.14; P = .28; R^2 , 0%; P = .838) and fetal growth restriction (relative risk, 0.95; 95% confidence interval, 0.66–0.95; P = .563).

CONCLUSION: Prevention of preeclampsia and fetal growth restriction using aspirin in early pregnancy is associated with a dose-response effect. Low-dose aspirin initiated at >16 weeks' gestation has a modest or no impact on the risk of preeclampsia, severe preeclampsia, and fetal growth restriction. Women at high risk for those outcomes should be identified in early pregnancy.

Key words: aspirin, fetal growth restriction, meta-analysis, meta-regression, preeclampsia, pregnancy, systematic review

From the Department of Obstetrics and Gynecology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada (Drs Roberge, Demers, Chaillet, and Bujold); Harris Birthright Research Center of Fetal Medicine, King's College Hospital, London, United Kingdom (Drs Roberge, Nicolaides, and Demers); and Department of Obstetrics and Gynecology, Faculty of Medicine, Central Clinical, University of Sydney, Sydney, Australia (Dr Hyett). Received July 18, 2016; revised Aug. 25, 2016; accepted Sept. 7, 2016.


The Canadian Institute of Health Research supported Dr Roberge (postdoctoral fellowship). The Fond de Recherche du Québec—Santé supported Dr Bujold (clinician scientist award) and Dr Demers (MSc award) during the study. The study was funded by the Jeanne and Jean-Louis Lévesque Perinatal Research Chair at Université Laval.

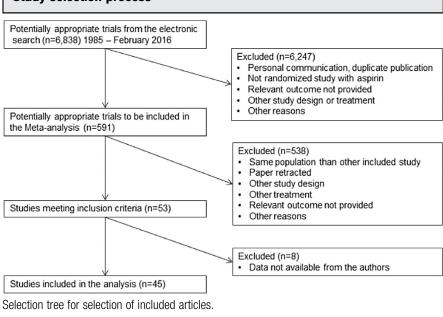
The authors report no conflict of interest.

Presented as an oral presentation at the 14th World Congress in Fetal Medicine, Crete, Greece, June 23, 2015.

Corresponding author: Emmanuel Bujold, MD, MSc. emmanuel.bujold@crchudequebec.ulaval.ca

0002-9378/\$36.00 • © 2016 Elsevier Inc. All rights reserved. • http://dx.doi.org/10.1016/j.ajog.2016.09.076

Click <u>Supplemental Materials</u> under article title in Contents at


Introduction

Preeclampsia (PE) and fetal growth restriction (FGR) are important causes of perinatal death and handicap in survivors. PE is responsible for >70,000maternal deaths each year around the world.¹ Additionally, PE is associated with increased long-term risk for development of cardiovascular disease in both the mother and her infant.²⁻⁴

Several studies examined the possibility that prophylactic use of low-dose aspirin in women at high risk of developing PE could reduce the prevalence of the disease. Meta-analyses of randomized controlled trials (RCTs) of aspirin vs placebo or no treatment showed that the prevalence of PE and FGR can be reduced by aspirin started at ≤ 16 weeks' gestation and the effect is most marked for severe PE leading to delivery at <34weeks' gestation; aspirin started at >16weeks had no significant effect on the prevalence of severe PE or FGR.^{5,6}

FIGURE 1

Roberge. Aspirin's dose for prevention of preeclampsia. Am J Obstet Gynecol 2017.

TABLE 1

tudy	Inclusion criteria	Intervention			
16 wk			Aspirin	Controls	Onset, wk
Tulppala et al, ⁶³ 1997	66	Previous consecutive miscarriage	50 mg	Placebo	<7
Benigni et al, ³² 1989	33	History risk factors ^a	60 mg	Placebo	12
^b Caritis et al, ³⁴ 1998	652	History risk factor ^a	60 mg	Placebo	13—16
^b Sibai et al, ⁶⁰ 1993	644	Nulliparity	60 mg	Placebo	13—16
^b Golding, ⁴¹ 1998	1997	Nulliparity	60 mg	Placebo	12—16
^b Ebrashy et al, ³⁸ 2005	136	Abnormal uterine artery Doppler plus history risk factors ^a	75 mg	No treatment	14—16
Zhao et al, ⁶⁹ 2012	237	History risk factor ^a	75 mg	Placebo	13—16
Odibo et al, ⁵⁴ 2015	30	History risk factor ^a	80 mg	Placebo	11-13
Porreco et al, ⁵⁶ 1993	90	Nulliparity + multiple gestation	80 mg	Placebo	<16
Jamal et al, ⁴⁶ 2012	70	Diagnose PCOS before pregnancy, 18–40 y, singleton, no history of diabetes or HTN	80 mg	No treatment	6—12
Mesdaghinia et al, ⁵⁰ 2011	80	Abnormal uterine artery Doppler	80 mg	No treatment	12—16
August et al, ²⁶ 1994	54	History risk factors ^a	100 mg	Placebo	13—15
Azar and Turpin, ²⁸ 1990	91	History risk factors ^a	100 mg ^c	No treatment	16
Bakhti and Vaiman, ²⁹ 2011	84	Nulliparity	100 mg	No treatment	8-10
Chiaffarino et al, ³⁵ 2004	35	Chronic HTN with or without history risk factors ^a	100 mg	No treatment	<14
Dasari et al, ³⁶ 1998	50	Nulliparity	100 mg	Placebo	12
Hermida et al, ⁴⁵ 1997	107	History risk factors ^a	100 mg	Placebo	12-16
oberge. Aspirin's dose for prevention of preeclampsia. Am J Obstet Gynecol 2017.					(continued)

Download English Version:

https://daneshyari.com/en/article/5676067

Download Persian Version:

https://daneshyari.com/article/5676067

Daneshyari.com