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a b s t r a c t

In this paper the mathematical geometric models of the single-lay wire strands and double-lay wire ropes
with defined initial parameters are presented. The present geometric models fully consider the single-
helix configuration of individual wires in the strand and the double-helix configuration of individual
wires within the wound strands of the ropes. The mathematical representation of the single and double
helixes is in form of parametric equations with variable input parameters which determine the centreline
of an arbitrary circular wire of the right hand lay and left hand lay strands and ropes of the Lang lay and
regular lay construction. The concrete forms of the parametric equations are derived and presented. The
application of the derived geometric analytical model is illustrated by numerical examples. Techniques
for the implementation of the derived mathematical models in CATIA V5 software and procedures for
the generation of the rope model are briefly presented. Correctness of the derived parametric equations
and a performance of the generated rope model are controlled by visualizations. The application of the
derived mathematical model and the development of a finite element model for the numerical simulation
of the multi-layered strand under tension tests are treated in the second part of the paper [1].

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Wire strands and ropes are used in a variety of engineering
applications due to their high strength-to-weight ratio and very
efficient use of the material. These characteristics are of particular
significance in the design of lightweight suspended structures and
large-span cable-stayed bridges.

Computer-aided design together with the finite element meth-
od create powerful sophisticated tools for the modelling and anal-
ysis of wire strands and ropes. These ropes often have highly
complex constructions that require structural analysis beyond sim-
ple, idealized mathematical models and simplified computational
approaches [2]. In the advanced design and analysis of wire strands
and ropes three fundamental phases can be identified: creation of
the geometric model, generation of the engineering cable model
using the CAD system and application of the finite element method
for an analysis under the required loading.

The geometric model plays key part in almost all further phases
of the design and analysis process. The three dimensional shape
of the single and double helixes defined by the mathematical

geometric equations must be converted into an engineering strand
and rope model and all of their constructional aspects (the single-
helix configuration of individual wires in the strands and the dou-
ble-helix configuration of individual wires within the wound
strands of the ropes) must be specified at this phase.

Several authors have developed geometrical and analytical mod-
els of strands and ropes to predict their behaviour under various
loads. The wire strands and ropes are treated either as a discrete
set of concentric orthotropic cylinders (the individual layer of wires
is replaced by an equivalent cylindrical orthotropic sheet) or as a
configuration of helically curved rods, with different assumptions
about the cable geometry or the inter-wire contacts, according to
the authors. Utting and Jones’ analysis [3,4] based on the classical
twisted rod theories for the behaviour of helical laid wires takes
the contact deformation and friction effects into account whereas
Costello’s approaches neglect them [5]. The orthotropic sheet mod-
el was first applied to cable modelling by Hobbs and Raoof [6] and
then extended by Raoof and his associates over two decades. Velin-
sky [7] presented the closed-form analysis for elastic deformations
of multi-layered strands and the design of wire ropes [8]. Lee [9]
presented the geometrical analysis applicable to any rope with axi-
symmetric strands. He derived the Cartesian coordinate equations,
which describe the helix geometry of wire within a rope. Through
the application of differential geometry and the use of engineering
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drawing development approach, problems associated with the
three-dimensional helix geometry of wire rope could be solved.
The derived geometric equations were used for an analysis of the
geometrical properties of cables. Hobbs and Nabijou [10] studied
the changes in curvature in single and double helixes as they are
bent into circular arcs. This analysis was applied to wire ropes to
examine the bending strains in the wires of a frictionless rope as
it is bent over a sheave. Jolicoeur and Cardou [11] proposed semi-
continuous mathematical model for the analysis of multilayered
wire strands under bending, tensile and torsion loads. Each layer
of a strand is mathematically represented by an orthotropic cylin-
der whose mechanical properties are chosen to match the behav-
iour of its corresponding layer of wires. Raoof and Kraincanic [12]
presented the model for the theoretical analysis of a large-diameter
wire rope, using results from a derived orthotropic sheet model, for
analyzing the behaviour of its constituent helical strands. Knapp
et al. [13] developed the CableCAD software code for the geometric
modelling and finite element analysis of cables. Elata et al. [14] pre-
sented a new model for simulating the mechanical response of a
wire rope with an independent wire rope core. In contrast with pre-
vious models that consider the effective response of wound strands,
the present model fully considers the double-helix configuration of
individual wires within the wound strand. This enables to directly
relate the wire level stress to the overall load applied at the rope le-
vel. The double-helix geometry is modelled with the parametric
equations because of its complex nature. A review of previous stud-
ies on the geometric modelling and analysis of steel and synthetic
cables can be found in [15,16]. Synthetic fibre ropes are character-
ized by a very complex architecture and hierarchical structure.
Leech et al. [17] presented a more complex analysis of fibre ropes
and included it in the commercial software Fiber Rope Modeller
(FRM). Usabiaga and Pagalday [18] derived the parametric equa-
tions of the double helical wires for the undeformed configuration
of the rope.

In this paper, the improved mathematical models for geometric
modelling of wire strands and ropes are derived and their imple-
mentation to the computer-aided design software CATIA V5 [19]
is described. The mathematical model developed is able to gener-
ate both single- or multi-layer strands’ and multi-strand ropes’
geometries by the computer. The present geometric models fully
consider the single-helix configuration of individual wires in the
strand and the double-helix configuration of individual wires with-
in the wound strands of the ropes. The mathematical representa-
tion of the single and double helixes is in form of parametric
equations with variable input parameters which determine the
axis of an arbitrary circular wire of the right hand lay and left hand
lay strands and ropes of the Lang lay and regular lay construction.
The concrete forms of the parametric equations are derived and
presented. The application of the derived geometric analytical
model is illustrated by numerical examples. Techniques for the
implementation of the derived mathematical model in CATIA V5
software and procedures for the creation of the rope model are
briefly presented. Correctness of the derived parametric equations
and a performance of the generated rope model are controlled by
visualizations. The application of the derived mathematical model
and the development of a finite element model for the numerical
simulation of the multi-layered strand under tension tests are trea-
ted in the second part of the paper [1].

2. Basic assumptions and problem formulation

The cables considered in this paper are a strand made of one or
more layers of circular wires helically laid over a central circular
straight core wire and a rope made of one or more layers of strands
helically laid around a core. Let us specify the basic terminology

necessary for further reading. The right (left) hand lay strand is a
strand in which the cover wires are laid in a helix having a right
(left) hand pitch. The right (left) hand lay rope is a rope in which
the strands are laid in a helix having a right (left) hand pitch. The
Lang’s lay rope is a rope in which the wires in the strands are laid
in the same direction that the strands in the rope are laid. The reg-
ular (ordinary) lay rope is a rope in which the wires in the strands
and the strands in the rope are laid in opposite directions.

A steel wire as the basic structural member of strands and ropes
can be laid in the strand or in the rope as:

� a core of the strand (the centreline of a core wire forms a
straight line),
� a wire in a layer of the strand (the centreline of a wire in a layer

forms a single helical curve),
� a strand core of the multi-strand rope (the centreline of a core

wire forms a single helix), and
� a wire in a strand layer of the multi-strand rope (the centreline

of a wire in a strand layer forms a double helical curve).

Consequently, at the mentioned cases the centreline of a wire
forms from geometric aspect two types of helical curves (single
and double helixes) depending on its location in the strand or in
the rope. Direction is positive when the helix is right handed.

To generate the geometry of strands and ropes the centrelines
of these helical curves must be expressed mathematically. The
assembling of geometric transformations in the space is one of pos-
sibilities how to obtain the parametric equations of wire centreline
(wire axis) [20].

3. Geometric transformations

Let us consider the Euclidean space over the real numbers field
E3(R) with a rectangular Cartesian coordinate system (0; x, y, z). In
this space every point M is uniquely determined by an ordered
triplet of numbers M[xM, yM, zM], where xM, yM and zM are the Carte-
sian coordinates of point M. By addition of ideal points to the basic
Euclidean space, the extended Euclidean space E3

1ðRÞ in which the
finite point M has homogeneous coordinates M(xM, yM, zM, 1) can be
obtained.

The displacement of the point M to the point M0 in the space can
be formulated by the use of geometric transformation. Spatial
transformation in the extended Euclidean space is analytically rep-
resented by square regular matrix of the 4th order with real ele-
ments. The matrices, which represent basic geometric
transformations (translations and rotations of the coordinate sys-
tem and the translation and rotations of the point) in the space,
are specified in the Appendix A. Then, the homogeneous coordinates
of the point M0ðx0M ; y0M ; z0M ;1Þ;to which the point M(xM, yM, zM, 1) is
displayed by transformation [Ti], are calculated as
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where [Ti] depends on the type of a translation or rotation (see the
Appendix A). The assembly of several transformations is performed
by the multiplication of the corresponding matrices [Ti]
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