
Software refactoring at the function level using new Adaptive K-Nearest
Neighbor algorithm

Abdulaziz Alkhalid a, Mohammad Alshayeb b,*, Sabri Mahmoud b

a 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
b Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

a r t i c l e i n f o

Article history:
Received 2 April 2010
Received in revised form 27 June 2010
Accepted 5 August 2010

Keywords:
Software refactoring
Clustering
Cohesion
Code restructuring
Function level cohesion
Software quality

a b s t r a c t

Improving the quality of software is a vital target of software engineering. Constantly evolving require-
ments force software developers to enhance, modify, or adapt software. Thus, increasing internal com-
plexity, maintenance effort, and ultimately cost. In trying to balance between the needs to change
software, maintain high quality, and keep the maintenance effort and cost low, refactoring comes up
as a solution. Refactoring aims to improve a number of quality factors, among which is understandability.
Enhancing understandability of ill-structured software decreases the maintenance effort and cost. To
improve understandability, designers need to maximize cohesion and minimize coupling, which becomes
more difficult to achieve as software evolves and internal complexity increases. In this paper, we propose
a new Adaptive K-Nearest Neighbor (A-KNN) algorithm to perform clustering with different attribute
weights. The technique is used to assist software developers in refactoring at the function/method level.
This is achieved by identifying ill-structured software entities and providing suggestions to improve
cohesion of such entities. We also compare the proposed technique with three function-level clustering
techniques Single Linkage algorithm (SLINK), Complete Linkage algorithm (CLINK) and Weighted Pair-
Group Method using Arithmetic averages (WPGMA). A-KNN showed competitive performance with the
other three algorithms and required less computational complexity.

� 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Changing requirements lead real-world software to constantly
evolve over time. As the software is enhanced, modified and
adapted, the code becomes more and more complex. Thus, the
quality of the software decreases. The major part of the total soft-
ware development cost is devoted to software maintenance [1–3].
This creates a need for techniques that reduce software complex-
ity, and hence, improve quality and reduce maintenance cost.
One such technique is referred to as restructuring [4,5] or, refactor-
ing [6,7] in Object Oriented (OO) software development. In a disci-
plined way, refactoring restructures the code into a simpler form to
improve its internal structure without changing its external func-
tionality or behavior.

Refactoring aims to improve several factors of software quality
such as understandability. It also makes developers program faster
and helps in finding bugs [7]. Since refactoring changes the internal
structure of the code, the internal quality attributes such as cou-
pling and cohesion will change [8]. Software designers try to max-

imize cohesion while minimize coupling [9]. The task of balancing
cohesion and coupling becomes challenging as software evolves
over time causing higher levels of internal complexity [9]. To aid
software designers in this increasingly difficult mission, some
automated techniques emerged as possible solutions. Pattern rec-
ognition based techniques can give suggestions to enhance the
cohesiveness of software components during software refactoring
activities.

Clustering is a statistical pattern recognition method used for
organizing data. A pattern is the opposite of chaos. Recognition
is the process of identifying a pattern as a member of a category.
It is the act of taking in raw data and taking an action based on
the ‘‘category” of the pattern [10]. Different models of classifica-
tion can be used in pattern recognition systems such as Tem-
plate Matching, Statistical (geometric), Syntactic (structural),
Artificial Neural Network (biologically motivated), and Hybrid
approach. These models require different types of features or
sets of features and may have different application areas. The
statistical pattern recognition approach focuses on the statistical
properties of the patterns, which are generally expressed in
probability densities. Thus, the patterns are usually represented
in a feature space and the goal is to partition the feature space
[10].

0965-9978/$ - see front matter � 2010 Elsevier Ltd. All rights reserved.
doi:10.1016/j.advengsoft.2010.08.002

* Corresponding author.
E-mail addresses: abdulaziz.alkhalid@kaust.edu.sa (A. Alkhalid), alshayeb@kfup-

m.edu.sa (M. Alshayeb), smasaad@kfupm.edu.sa (S. Mahmoud).

Advances in Engineering Software 41 (2010) 1160–1178

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://dx.doi.org/10.1016/j.advengsoft.2010.08.002
mailto:abdulaziz.alkhalid@kaust.edu.sa
mailto:alshayeb@kfupm.edu.sa
mailto:alshayeb@kfupm.edu.sa
mailto:smasaad@kfupm.edu.sa
http://dx.doi.org/10.1016/j.advengsoft.2010.08.002
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


In this paper, we present an approach to software refactoring at
the function/method level using clustering algorithms. The objec-
tive is to provide automated support to identify ill-structured or
low-cohesive functions and present refactoring suggestions as

heuristic advice to software designers to guide their refactoring
activities.

We introduce a new Adaptive K-Nearest Neighbor (A-KNN)
algorithm to perform clustering with different attribute weights.
We also compare its performance to other three other hierarchical
agglomerative clustering algorithms: Single Linkage algorithm
(SLINK), Complete Linkage algorithm (CLINK) and Weighted Pair-
Group Method using Arithmetic averages (WPGMA).

2. Literature review

Researchers suggested using clustering techniques to restruc-
ture software systems. Wiggerts [11] provided an overview of clus-
tering analysis and of system re-modularization. Tzerpos and Holt
[12] surveyed clustering approaches and concluded that clustering
techniques used in other disciplines can be used in the software
context. Lakhotia [13] presented a unified framework for express-
ing methods of classifying subsystems of a software system. The
framework helps in comparing various subsystem classification
techniques.

Other researchers proposed and used different clustering tech-
niques to restructure modules. Kim and Kwon [14] present meth-
ods that can be readily automated to restructure ill-structured
modules at the maintenance phase. They used the module strength
as a criterion to decide how to restructure the module. Kang and
Beiman [15,16] introduced a quantitative framework for software
restructuring. They used measures of design-level cohesion and
coupling as the criteria for comparing alternative design structures.
Lakhotia and Deprez [17,18] proposed a transformation called
‘‘tuck” to restructure programs by breaking large functions into
small functions. The method complements those reported in [14–
16]. Lung et al. [19] applied clustering techniques to functional
restructuring and demonstrated how to restructure a low-cohesive
function into high-cohesive functions. They treated executable
program statements as basic entities and variables as attributes.

Komondoor and Horwitz [20] described an algorithm for
extracting ‘‘difficult” sets of statements and compared the algo-
rithm previously reported automatic approaches and to human
extraction. Harman and Hierons [21] reviewed three forms of pro-
gram mslicing: static, dynamic and conditioned and two syntactic
paradigms: syntax�preserving and amorphous. Maruyama [22]
proposed a technique that automatically refactors of object-ori-

Table 1
Attributed matching combinations and their indications.

Combination Indication

0–0 match The data or control attribute are not present in both
entities

1–1 match The same control attribute is present in both entities.
2–2 match The same data attribute is present in both entities and

neither of them is a control entity
1–0 or 0–1 match

(mismatch)
A control attribute is present in one entity and is not
present in the other

2–0 or 0–2 match
(mismatch)

A data attribute is present in one entity and is not
present in the other

2–1 or 1–2 match A data attribute is present in both entities. However, it
is a control variable in one entity, and it is a non-
control variable in the other (like the variable which
contains the maximum number of iterations in a loop
definition)

Fig. 1. Example of KNN classification.

Fig. 2. A-KNN algorithm for K = 3.

A. Alkhalid et al. / Advances in Engineering Software 41 (2010) 1160–1178 1161



Download English Version:

https://daneshyari.com/en/article/567678

Download Persian Version:

https://daneshyari.com/article/567678

Daneshyari.com

https://daneshyari.com/en/article/567678
https://daneshyari.com/article/567678
https://daneshyari.com

