
Integration of usability evaluation and model-based software development

Stefan Propp *, Gregor Buchholz, Peter Forbrig
University of Rostock, Institute of Computer Science, Albert Einstein Str. 21, 18059 Rostock, Germany

a r t i c l e i n f o

Article history:
Received 22 September 2008
Received in revised form 19 November 2008
Accepted 19 January 2009
Available online 9 April 2009

Keywords:
Model-based usability evaluation
Task models
HCI

a b s t r a c t

Model-based software development is carried out as a well defined process. Depending on the applied
approach, different phases can be distinguished, e.g. requirements specification, design, prototyping,
implementation and usability evaluation. During this iterative process manifold artifacts are developed
and modified, including, e.g. models, source code and usability evaluation data. CASE tools support the
development stages well, but lack a seamless integration of usability evaluation methods. We aim at
bridging the gap between development and usability evaluation, through enabling the cooperative use
of artifacts with the particular tools. As a result of integration usability experts save time to prepare
an evaluation and evaluation results can be easier incorporated back into the development process.
We show exemplary our work on enhancing the Eclipse framework to support usability evaluation for
task model-based software development.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Model-based software development describes a process, which
starts with abstract models and refines them iteratively. Models
are transformed and adapted to more concrete models for different
platforms and finally transformed into code which is deployed at
the target platform. Traditional usability evaluation provides
methods to evaluate a couple of different artifacts, but lacks a
seamless integration into the development process from early
development stages to the deployment of the product. Therefore
we aim at bridging the gap between development and usability
evaluation, through enabling the cooperative use of artifacts with
developers and usability experts and pave the way towards a
seamless integration of both processes.

Our work specifically focuses on the task model-based develop-
ment of interactive systems [2]. Task models describe possible se-
quences of sub tasks to accomplish a certain goal and temporal
relations between tasks [7]. Task models serve as basis for the
model-based development of user interfaces. To evaluate the
usability of the derived user interface the underlying task model
can be used to track the user interaction at a task-based level of
abstraction. The particular advantage is a concise overview, which
hides the device specific user interface events. Therefore the anal-
ysis of a task trace is better readable and traces through an appli-
cation deployed at different devices can be compared directly.
Examples using this technique are RemUSINE [8] and ReModEl
[1]. RemUSINE firstly captures the user interactions and subse-
quently maps the interactions to a trace of tasks, which were car-

ried out. However ReModEl deploys a task engine which natively
recognizes the tasks at runtime and captures the tasks without
mapping stage. For the subsequent analysis of task traces, Malý
and Slavík suggested a visualization technique [5], further devel-
oped in [8,9]. A task trace is depicted as timeline to compare differ-
ent users’ behavior at a task-based level.

The previously stated approaches serve as individual methods
and target deployed applications, but are not integrated into the
development environment. This paper discusses our approach of
integration to provide usability testing at all stages of the develop-
ment instantly on the artifacts currently under development. A
prototypical implementation of the described usability evaluation
tool support as extension to an existing task interpretation engine
developed at our working group [2] is presented as well. This
implementation covers the creation, simulation modification and
refinement of task models and provides support in developing dia-
log graphs and graphical user interfaces based upon pattern-driven
UI development [11]. Details of the interpretation engine are given
in Section 2.2.2. Evaluations as described here are intended to
seamlessly fit into the development process. Within these evalua-
tions, the focus lies on the efficiency of the system developed so
far. The approach is discussed in Section 2. The integration into
the development tools implemented as plugins for the Eclipse
IDE is exemplified in Section 3.

2. Concept

2.1. Model-based usability evaluation

From our perspective it is a main principle of model driven soft-
ware development (MDSD), that both software engineers and user

0965-9978/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.advengsoft.2009.01.025

* Corresponding author. Tel.: +49 381 498 7444; fax: +49 381 498 7482.
E-mail address: stefan.propp@uni-rostock.de (S. Propp).

Advances in Engineering Software 40 (2009) 1223–1230

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

mailto:stefan.propp@uni-rostock.de
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


interface designers base their work on the same models. Progress
in development is reflected in a sequence of transformations from
the initial models (task model, user model, device model) as results
of the requirements analysis to a finished software product. Those
transformations cannot be done in a fully automated way but re-
quire humans using interactive tools. In the past we have devel-
oped such tools providing support in the creation and
transformation of models [2,11]. Initially, a hierarchical task model
describes the decomposition of the root task (also referred to as the
user’s goal) into sub tasks that are to be carried out to reach the
goal. Tasks can be optional and iterative and temporal relation-
ships between different sub tasks define the order in which the
sub tasks have to be executed. The user model describes the differ-
ent roles a user can take on and by assigning roles to sub tasks
cooperative behavior can be modeled where different users are in-
volved in the work on a task (e.g. a customer and an employee of a
travel agency take part in the task ‘‘book flight”). Device models
specify the capabilities of different types of devices the software
product is planned to be used at. They are also structured hierar-
chically. Hence an include-relationship can be modeled (for exam-
ple, if the sub task ‘‘seat reservation” is specified to be executable
on a mobile phone it can be performed on a PDA as well). Based
on those models the development of a user interface comprehends
the creation of a device independent abstract user interface (AUI),
one or more device specific concrete user interfaces (CUI) specified
by dialog graphs [2] and the final interfaces as device specific ren-
dering results. The integration of usability evaluation into this pro-
cess of transformations is depicted in Fig. 1.

Each development stage is accompanied by usability evaluation
tests (depicted as Simulation 1–4 in Fig. 1):

1. Task model simulations are used to reveal structural problems
in the underlying model. These problems may be wrong or
not appropriate temporal relations between tasks and inade-
quate arrangements and groupings in the task hierarchy.
Interactive simulations can further uncover lacking under-
standing of the task domain and indicate modeling mistakes.
Task models in this stage do not necessarily contain tasks that
have to be carried out as interactive tasks only but may also
cover activities that are executed without any support by
the system under development. The purpose of evaluations
in this stage is to fortify a common consensus about what
processes the system is to support and how these processes
are structured.

2. Evaluation techniques targeting the dialog model allow finding
deficient support of the user in providing access to the modeled
tasks at the right time and the right place. While the dialog
model used in this stage does not include any UI elements the
evaluation is conducted with a very basic representation of
the tasks arranged in the dialogs. Thus, the navigational struc-
ture of the system is verified. The simulation may be carried
out by an expert based on scenarios defined earlier in the devel-
opment process or by potential users who are instructed to sim-

ulate the execution of tasks necessary to accomplish a certain
goal.

3. Since abstract UIs are automatically generated from the dialog
model, they represent first prototypical and simple UIs. Testing
facilitates the pattern-based process of replacing very basic UI
components with more specific ones, comparing the efficiency
that is reached by executing tasks while using either one or
another version of the interface. The iterative sequence of refin-
ing the GUI and evaluating it starts with the button representa-
tion of tasks used as described before. In contrast to evaluations
in phase 2 now the refined user interface components are
focused regarding their contribution to a usable way of fulfilling
a specific task. Up to now, there is hardly any functionality of
the system implemented. Interface elements may be linked to
a prototypical or static data model but there is no underlying
logic.

4. Once the evaluated interface is merged with the application
model and a system offering the entire proposed functionality,
further evaluation methods based on UI events, video record-
ings and other techniques can be applied to ensure and opti-
mize the final UI’s usability. All these additional sources of
evaluation data have to be linked to corresponding elements
in the task model. Thus, after finding usability problems in this
stage the techniques described in phase 1–3 can be applied
focusing the basic cause of the problem just found, if necessary.

The next sections will go into the details of model-related eval-
uation techniques in the successive development stages as out-
lined before.

2.2. Capturing interactions

2.2.1. Capturing at different levels of abstraction
A common used technique of usability evaluation is to equip the

test users with devices and applications that have to be tested and
observe the interaction with the device [6]. The observed data
comprises for instance video and audio sequences, mouse move-
ments, keystrokes or annotations by an expert. In ubiquitous envi-
ronments, where users are moving and interacting with different
devices’ UIs, some additional sensors are beneficial, for instance
location sensors and information about the handled objects in
the environment (e.g. exploiting RFID information). We focus on
interaction events, which can be captured automatically by the
system. Such a trace of interactions can be captured at different
levels of abstraction [4]: beginning with physical events (e.g. hand
moving a mouse), over UI events (e.g. button press), to goal-related
information (e.g. printing a document). The lower levels of abstrac-
tion can be captured simply as system internal events, but cause a
vast amount of data, whereas higher level events can be inter-
preted more directly, but normally need to be derived from the
lower level events. For deriving higher level events, we aim at reus-
ing the models from software engineering (depicted in Fig. 1),
which are task, user, device and domain model.

Fig. 1. Integration of usability evaluation into MDSD.

1224 S. Propp et al. / Advances in Engineering Software 40 (2009) 1223–1230



Download English Version:

https://daneshyari.com/en/article/567696

Download Persian Version:

https://daneshyari.com/article/567696

Daneshyari.com

https://daneshyari.com/en/article/567696
https://daneshyari.com/article/567696
https://daneshyari.com

