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Abstract

Noise reduction, which aims at extracting the clean speech from noisy observations, has plenty of applications. It has attracted a con-
siderable amount of research attention over the past several decades. Although many methods have been developed, the most widely used
one, by far, is the optimal linear filtering technique, which achieves clean speech estimate by passing the noisy observation through an
optimal linear filter/transformation. The representative algorithms of this include Wiener filtering, spectral restoration, subspace method,
etc. Many experiments have been carried out, from various points of view, to show that the optimal filtering technique can reduce the
level of noise that is present in the speech signal and improve the corresponding signal-to-noise ratio (SNR). However, there is not much
theoretical justification so far for the noise reduction and SNR improvement. This paper attempts to provide a theoretical analysis on the
performance (including noise reduction, speech distortion, and SNR improvement) of the optimal filtering noise-reduction techniques
including the time-domain causal Wiener filter, the subspace method, and the frequency-domain subband Wiener filter. We show that
the optimal linear filter, regardless of how we delineate it, can indeed reduce the level of noise (but at a price of attenuating the desired
speech signal). Most importantly, we prove that the a posteriori SNR (defined after the optimal filtering) is always greater than, or at least
equal to the a priori SNR, which reveals that the optimal linear filtering technique is indeed able to make noisy speech signals cleaner. We
will also discuss the bounds for noise reduction, speech distortion, and SNR improvement.
© 2007 Elsevier B.V. All rights reserved.

1. Introduction achieves clean speech estimate by passing the noisy obser-
vation through an optimal linear filter/transformation. A

Since we live in a natural environment where noise is variety of such algorithms have been developed. They prin-

inevitable and ubiquitous, speech signals can seldom be
recorded in pure form and are generally contaminated by
acoustic background noise. As a result, the microphone
signals have to be “cleaned up” with digital signal process-
ing tools before they are stored, transmitted, or played out.

The cleaning process, which is often referred to as either
noise reduction or speech enhancement, can be achieved in
many different ways, such as beamforming, adaptive can-
cellation, temporal filtering, spatial-temporal filtering,
etc. The most widely used technique thus far, however, is
the single-channel optimal linear filtering approach, which
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cipally fall into one of the following four categories: Wiener
filter, spectral restoration, subspace method, and parametric
method.

Wiener filter: This method restores the desired speech
signal by passing the noisy speech through a finite
impulse response (FIR) filter whose coefficients are esti-
mated by minimizing the mean square error (MSE)
between the clean speech and its estimate (Widrow
and Stearns, 1985). The Wiener filter can also be delin-
eated in the frequency domain, resulting in various
derivative techniques such as spectral subtraction (Boll,
1979; McAulay and Malpass, 1980; Lim, 1983; Lim and
Oppenheim, 1979), parametric Wiener filter (Lim and
Oppenheim, 1979; Vary, 1985; Etter and Moschytz,
1994; Chen et al., 2003; Diethorn, 2004), etc.
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Spectral restoration: In the frequency domain, a speech
signal can be factorized into spectral amplitude and
phase components. From perceptual point of view, the
former is considerably more important than the latter
(Lim and Oppenheim, 1979; Vary, 1985; Wang and
Lim, 1982). Therefore the spectral-restoration technique
recovers only the spectral amplitude (or spectral enve-
lope) of the clean speech from that of the corrupted
speech while neglecting the phase corruption (Ephraim
and Malah, 1984, 1985; Virag, 1999; Chang and
O’Shaughnessy, 1991).

Signal subspace: This method decomposes the vector
space of the noisy speech into two orthogonal subspaces
using the Karhunen-Loeve transform (KLT): one is
composed of both speech and noise and the other con-
sists of noise component only. This is possible because
it has been proven that the clean speech can be described
with a low-rank model. After decomposition, the speech
signal is estimated by removing the noise subspace, and
cleaning the speech-plus-noise subspace (Ephraim and
Van Trees, 1995; Dendrinos et al., 1991; Hansen, 1997;
Lev-Ari and Ephraim, 2003; Rezayee and Gazor, 2001;
Mittal and Phamdo, 2000; Hu and Loizou, 2003).
Parametric method: It is well known that a speech signal
can be modelled as an autoregressive (AR) process.
Therefore, noise reduction can be formulated as a
parameter estimation problem with its objective to esti-
mate the AR model parameters of the clean speech from
the noisy observations (Paliwal and Basu, 1987; Gibson
et al., 1991; Gannot et al., 1998).

Although so many optimal filtering algorithms have
been developed for noise reduction, there has been remark-
ably little (if any) theoretical analysis of their performance.
The reason may be attributed to the difficulty in quantizing
the combinatorial effect between noise reduction and
speech distortion. Most existing performance studies have
been experimental, including: (1) ranking the mean opinion
scores, (2) examining the SNR improvements, (3) inspect-
ing the speech spectrograms, and (4) comparing the noise
levels before and after the application of an algorithm.
While the results are very helpful for us to understand
how the algorithms behave in the specified conditions,
the experimental evaluation alone is not enough to justify
the algorithms. A more thorough theoretical analysis is
important and imperative. Recently, we performed some
analysis of the time-domain Wiener filter and proved that,
as long as we have an accurate estimate of the statistics of
the noisy speech and the noise signal, SNR improvement is
guaranteed, no matter whether the noise is white or colored
(Chen et al., 2006; Benesty et al., 2005). This paper presents
our continued efforts on this topic. The main contribution
of this paper is a theoretical analysis on the performance
of the optimal [from the minimum-mean-square error
(MMSE) sense] filtering techniques including the time-
domain causal, the frequency-domain noncausal, and the
constrained (subspace) Wiener filters. We show that the

optimal filter, regardless of how we delineate it, can indeed
reduce the level of noise. Most importantly, we prove that
the a posteriori SNR is always greater than, or at least
equal to the a priori SNR, provided that the statistics of
the noisy speech and noise signals are accurately estimated.
Also discussed are the lower and upper bounds for noise
reduction, speech distortion, and SNR improvement.

2. Signal model and problem formulation

The noise-reduction problem considered in this paper is
to recover a speech signal of interest x(n) from the noisy
observation

y(n) = x(n) + v(n), ()

where v(n) is the unwanted additive noise, which is assumed
to be a zero-mean random process (white or colored) and
uncorrelated with x(n). This signal model can also be
formulated in other forms. For example, in vector/matrix
form, it is written as

y(n) = x(n) +v(n), (2)
where
»(n) = [¥(n) y(n—1) yin—L+ 1]

is a vector consisting of the L most recent samples of the
noisy speech signal, superscript T denotes transpose of a
vector or a matrix, and x(n) and v(n) are defined in a similar
way to y(n). In this case, the noise-reduction problem is for-
mulated as one of estimating x(n) from the observation
y(n).

If applying the L-point discrete Fourier transform
(DFT) to both sides of (2), we have the following relation-
ship in the frequency domain:

Y(najwk) = X(nvfwk) + V(n7jwk)7 (3)
where

L-1

Y(n,joy) = Zw(l)y(n — L4 1+ 1)e 7/

[=!

is the short-time DFT of the noisy speech at time instant #,
wr =2nk/L, k=0,1,...,L — 1, w(]) is a window function
(e.g. Hamming window, Hann window) applied to the
frame signal for better spectral estimation, and X(n,jwy)
and V(n,jw;) are the short-time DFTs for the clean speech
and the noise signal, defined in a similar way to Y(n,jwy).
Based on this relationship, the noise-reduction problem
can be expressed in the frequency domain as one of esti-
mating X(n,jwy,) from Y(n,jowy).

3. Time-domain causal Wiener filter and its performance

The Wiener filter is one of the most fundamental
approaches for noise reduction, which can be formulated
either in the time or in the frequency domains. In the
time-domain Wiener filter, an estimate of the clean speech
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