ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Speech Communication 49 (2007) 317-330

SPEECH

COMMUNICATION

www.elsevier.com/locate/specom

Multisyn: Open-domain unit selection for the
Festival speech synthesis system

Robert A.J. Clark *, Korin Richmond, Simon King

CSTR, The University of Edinburgh, 2 Buccleuch Place, Edinburgh EH8 9LW, UK

Received 12 June 2006; received in revised form 25 January 2007; accepted 25 January 2007

Abstract

We present the implementation and evaluation of an open-domain unit selection speech synthesis engine designed to be flexible
enough to encourage further unit selection research and allow rapid voice development by users with minimal speech synthesis knowl-
edge and experience. We address the issues of automatically processing speech data into a usable voice using automatic segmentation
techniques and how the knowledge obtained at labelling time can be exploited at synthesis time. We describe target cost and join cost
implementation for such a system and describe the outcome of building voices with a number of different sized datasets. We show that, in
a competitive evaluation, voices built using this technology compare favourably to other systems.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Speech synthesis; Unit selection

1. Introduction

Over the last decade, the Festival speech synthesis sys-
tem (Taylor et al., 1998) has become the de facto standard
free toolkit for speech synthesis research. It has also
formed the starting point for at least three leading commer-
cial systems.'

Until recently, Festival offered two distinct methods for
concatenative synthesis: a conventional single-instance
diphone-based method using an inventory containing one
recording of each diphone type, and the “clunits’ method
(Black and Taylor, 1997) which uses an inventory of units
recorded in natural sentences and performs a restricted
form of unit selection.

In this paper, we introduce a third method: a general-
purpose unit selection algorithm, along with the tools for

* Corresponding author. Tel.: +44 131 6511767.

E-mail addresses: robert@cstr.ed.ac.uk, Rob.Clark@ed.ac.uk (R.A.J.
Clark), korin@cstr.ed.ac.uk (K. Richmond), Simon.King@ed.ac.uk
(S. King).

' From Rhetorical Systems (now Nuance), AT&T and Cepstral.

0167-6393/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.specom.2007.01.014

building voices. The method is general-purpose because it
is capable of realising open-domain voices (“clunits” per-
forms best in limited domains, where the recordings in
the inventory are from the same domain — e.g. use the same
limited vocabulary and constrained syntax — as the utter-
ances to be synthesised). We call this method “Multisyn”
and it can be downloaded as part of Festival 1.95 and
above from https://www.cstr.ed.ac.uk.

Unit selection speech synthesis (Black and Campbell,
1995; Hunt and Black, 1996) was proposed as a way to
solve some of the problems of unnaturalness introduced
by the signal processing techniques needed to produce
convincing synthetic speech from a database consisting
of a single example of each diphones that occurs in a lan-
guage. Instead of having one example of each diphone, a
number of examples in different contexts are included,
and the synthesis process is formulated as a search
problem. A search is performed to find the best sequence
of diphones (or potentially other sized units). The goal of
unit selection speech synthesis is to select a sequence of
diphones which requires much less signal processing than
standard diphone synthesis, or ideally no signal process-
ing at all.


http://https://www.cstr.ed.ac.uk
mailto:robert@cstr.ed.ac.uk
mailto:Rob.Clark@ed.ac.uk
mailto:korin@cstr.ed.ac.uk
mailto:Simon.King@ed.ac.uk

318 R A.J. Clark et al. | Speech Communication 49 (2007) 317-330

There are a number of important issues to be addressed
in a robust and efficient implementation of unit selection,
and recent advances have lead to an improved understand-
ing of the process. The first of these involves designing the
recording script. Much of this work discusses the use of
greedy algorithms to optimally select a script from a very
large text corpus, examples include the work by van Santen
and Buchsbaum (1997), Bozkurt et al. (2003) and Kominek
and Black (2004), whilst other work discusses the theoreti-
cal and practical problems of recording the ideal dataset
(M&bius, 2001).

Once a dataset has been recorded, it needs to be
searched efficiently. The general search method (Hunt
and Black, 1996) has been refined (e.g. Conkie, 1999; Tay-
lor, 2000; Bulyko and Ostendorf, 2001) and complemented
by other procedures for specific tasks such as limited
domain speech synthesis (Black and Lenzo, 2000).

The primary goal of our Multisyn engine is to provide
state-of-the-art unit selection speech synthesis within a
framework that makes it easy to (semi-automatically)
develop new voices, with only limited speech synthesis
knowledge.

1.1. Unit selection speech synthesis

A full tutorial on unit selection speech synthesis is
beyond the scope of this paper; we refer the reader to
(Hunt and Black (1996)). However, we will define the ter-
minology to be used in the rest of this paper.

Unit selection speech synthesis uses a recorded database
(sometimes called the inventory) of speech. This usually
consists of recordings of isolated, naturally occurring sen-
tences (e.g. from newspaper text). The inventory along
with its associated linguistic annotation is called the voice.
Units are extracted from this database and concatenated
to synthesise novel utterances. The unit type may be the
same throughout the database (e.g. diphones), or variable
(e.g. a mixture of phones, diphones, syllables, etc.). The
database should contain multiple examples of each unit
type.

To synthesise a novel utterance, a target utterance is
constructed, which consists of the desired linguistic specifi-
cation of the utterance: the words, the phone sequence, the
syllable boundaries, placement of accents, optionally a
pitch contour and segment durations, and so on. The target
is constructed from the input text by the language process-
ing front end, which is usually using some combination of
rules and statistical models.

A sequence of units taken from different places in the
database is then found which best matches this target. This
task is performed by the unit selection engine. “‘Best match-
ing” is measured by two costs, summed over the unit
sequence. The chosen unit for a given position in the target
utterance is selected from a set of available candidate units
which may be all matching diphones (regardless of context)
in the inventory, or may be a subset of those (after some
pre-selection has been applied — Section 3.6).

The join cost estimates how well two consecutive units
will join together in the large number of cases where they
were not contiguous in the database and is commonly
computed using only acoustic features. The rarget cost
measures how well a unit matches part of the target speci-
fication, for example in terms of the constituent phones,
within-syllable or within-phrase position, and is commonly
computed using linguistic features. Since the join and tar-
get costs are locally computed, a Viterbi search can be used
to efficiently search for the unit sequence that minimises the
total cost. The details of how the join and target costs are
computed vary from system to system.

1.2. Structure of this paper

Since Festival is primarily a research toolkit, this paper
concentrates on explaining how Multisyn satisfies two
design goals. The first goal is to provide a stable general-
purpose unit selection implementation that is suitable for
carrying out further research into unit selection and related
techniques. The second goal is to provide the end user with
a simple, mostly automatic mechanism to build their own
voice for the system, requiring only limited specialist
knowledge. As we shall see, this second goal means that
there are times when we have employed a simple but robust
technique instead of a potentially better, but more complex,
technique. Particular attention is given to the design deci-
sions and procedures required to build new voices.

In Section 2 we describe the design and implementation
of the Multisyn unit-selection engine. The front end pro-
cesses used with this engine are simply a subset of those
used in the standard diphone system so are not described
in this paper. We also compare and contrast the Multisyn
approach to other approaches. Sections 3 and 4 discuss
the requirements for the database and the process of build-
ing a voice from it respectively. In Section 5, we address the
issue of automatic segmentation to phonetically label
recorded speech databases. In Section 6 we discuss speech
synthesis evaluation techniques and recent evaluation in
which the Multisyn engine has been involved.

2. Multisyn design and implementation

The Multisyn unit selection algorithm implemented in
Festival is conventional and reasonably straightforward,
and follows the description in Section 1.1.

2.1. Festival’s architecture

Festival is modular and uses a simple framework, com-
monly known as a “blackboard architecture”. The system
is centred on a common data structure, called the Utter-
ance, which is passed from module to module within the
system. Modules either modify existing parts — called Rela-
tions — of this Utterance structure, or add new Relations.
This architecture allows users to control easily both the
sequence of processes in the pipeline of modules (perhaps



Download English Version:

https://daneshyari.com/en/article/567742

Download Persian Version:

https://daneshyari.com/article/567742

Daneshyari.com


https://daneshyari.com/en/article/567742
https://daneshyari.com/article/567742
https://daneshyari.com/

