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Abstract

A major disadvantage of conventional meshless methods as compared to finite element method (FEM) is their weak performance in
dealing with constraints. To overcome this difficulty, the penalty and Lagrange multiplier methods have been proposed in the literature.
In the penalty method, constraints cannot be enforced exactly. On the other hand, the method of Lagrange multiplier leads to an ill-con-
ditioned matrix which is not positive definite. The aim of this paper is to boost the effectiveness of the conventional reproducing kernel
particle method (RKPM) in handling those types of constraints which specify the field variable and its gradient(s) conveniently. Insertion
of the gradient term(s), along with generalization of the corrected collocation method, provides a breakthrough remedy in dealing with
such controversial constraints. This methodology which is based on these concepts is referred to as gradient RKPM (GRKPM). Since
one can easily relate to such types of constraints in the context of beam-columns and plates, some pertinent boundary value problems are
analyzed. It is seen that GRKPM, not only enforces constraints and boundary conditions conveniently, but also leads to enhanced accu-
racy and substantial improvement of the convergence rate.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In many problems of computational physics and engi-
neering, one needs to incorporate the gradients of the field
variables accurately. This task, in the context of reproduc-
ing kernel particle method (RKPM) [1], requires the
increase in number of particles together with employment
of higher order correction functions. An important area
that RKPM needs improvement relates to the essential
boundary conditions (EBCs) involving the derivatives of
the field quantities. Unlike finite element method (FEM),
the shape function associated with RKPM does not neces-
sarily satisfy the Kronecker delta property. Hence, enforce-
ment of the EBCs via conventional RKPM becomes
inconvenient. The present paper, based on introduction
of the derivatives of the function into the reproducing

equation, develops new formulations of the RKPM for
one- and two-dimensional (1D and 2D) problems, which
is referred to as gradient RKPM (GRKPM). It will be
shown that, the proposed approach can conveniently incor-
porate the EBCs involving the derivatives of the function,
and produce more accurate results than the conventional
one.

Suppose that for a one-dimensional problem of the
interest, the EBCs involve both the function and its first
derivative

uðxÞ ¼ g0ðxÞ; x 2 C0; ð1aÞ
u0ðxÞ ¼ g1ðxÞ; x 2 C1; ð1bÞ

where C0 is that part of the boundary on which u(x) is pre-
scribed, whereas C1 refers to the boundary on which u 0(x)
has been specified. In the context of meshfree methods,
i.e., RKPM, element free Galerkin method (EFGM) [2],
and generalized moving least squares [3], assuming

wijðxÞ � wjðxiÞ 6¼ dij; ð2Þ

0965-9978/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.
doi:10.1016/j.advengsoft.2006.10.005

* Corresponding author. Tel.: +98 21 6600 5818; fax: +98 21 6601 4828.
E-mail address: shodja@sharif.edu (H.M. Shodja).

www.elsevier.com/locate/advengsoft

Advances in Engineering Software 38 (2007) 229–243

mailto:shodja@sharif.edu


where wj(xi) is the shape function associated with the jth
particle, which is evaluated at the ith particle, and dij is
the Kronecker delta. In the above-mentioned meshfree
methods, the function uR(x), which is the reproduced func-
tion of u(x), is related to the values of degrees of freedom
(DOF) d through uR(x) = w(x)d. For this reason in view
of (2) at a given point xi, the value of u and the value of
degree of freedom are not equal, i.e., u(xi) 5 di. It is due
to this undesirable property which makes it cumbersome to
relate the value of u(x) at an essential boundary node to the
value of the pertinent degree of freedom. Similar difficulty
holds for the derivative of the function, u 0(x).

The above-mentioned shortcomings of RKPM, have
posed a challenge and received the attentions of many dis-
tinguished investigators to this issue, subsequently in the
literature, there are many publications devoted to the sub-
ject. For example Gosz and Liu [4] have employed a type of
correction function which takes on the value of zero on the
boundaries, and Günther and Liu [5] have used a scheme
based on d’Alembert’s principle. In the context of EFGM,
the method of Lagrange multiplier was first proposed by
Belytschko et al. [2], and modified by Lu et al. [6]. This
method has been extensively used to enforce EBCs includ-
ing the field quantity and its first derivative(s), e.g. in plate
problems [7,8]. The penalty method is another alternative
for this purpose [3], which was first proposed by Belytschko
et al. [9] and detailed by Zhu and Atluri [10]. Chen et al.
[11] presented the transformation technique which is very
efficient. However, it is not applicable to the derivative type
of essential boundary conditions. Krongauz and Bely-
tschko [12] have employed EFGM to the interior domain,
and applied FEM to the strips in the neighborhood of the
boundaries. Thorough discussions on the advantages and
shortcomings of these methods are given by Li and Liu
[13].

2. Development of 1D GRKPM

2.1. Reproducing equation

Let the reproduced function be expressed in terms of the
function and its first derivative

uRðxÞ ¼
Z

X

�/0
aðx; x� yÞuðyÞdy þ

Z
X

�/1
aðx; x� yÞu0ðyÞdy;

ð3Þ

where u(y) is a field quantity whose gradient is u0ðyÞ;
�/0

aðx; x� yÞ and �/1
aðx; x� yÞ are the modified kernel func-

tions associated with the function and its gradient,
respectively.

�/0
aðx; x� yÞ ¼ C0ðx; x� yÞ/aðx� yÞ; ð4aÞ

�/1
aðx; x� yÞ ¼ C1ðx; x� yÞ/aðx� yÞ: ð4bÞ

In relation (4) a is a dilation parameter, /aðx� yÞ ¼
1
a / x�y

a

� �
is a kernel function, C0(x;x � y) and C1(x;x � y)

are the correction functions defined by

C0ðx; x� yÞ ¼
Xn

s¼0

nsðxÞðx� yÞs; ð5aÞ

C1ðx; x� yÞ ¼
Xn

s¼0

gsðxÞðx� yÞs; ð5bÞ

where ns’s and gs’s are the unknown coefficients, which are
determined from the completeness conditions. Eqs. (4) and
(5) yield

�/0
aðx; x� yÞ ¼

Xn

s¼0

nsðxÞðx� yÞs/aðx� yÞ; ð6aÞ

�/1
aðx; x� yÞ ¼

Xn

s¼0

gsðxÞðx� yÞs/aðx� yÞ: ð6bÞ

2.2. Completeness

2.2.1. Conditions on the function
Consider the first 2n + 2 terms in the Taylor series

expansion of u about point x

uðyÞ ffi uðxÞ þ
X2nþ1

a¼1

ð�1Þaðx� yÞa

a!
uðaÞðxÞ; ð7Þ

where

uðaÞ ¼ dau
dxa

: ð8Þ

Differentiating (7), gives

u0ðyÞ ffi �
X2nþ1

a¼1

ð�1Þaaðx� yÞa�1

a!
uðaÞðxÞ: ð9Þ

Upon substitution of Eqs. (7) and (9) into (3), one obtains

uRðxÞ ffi uR0ðxÞ þ uR1ðxÞ; ð10Þ

where

uR0ðxÞ ¼
X2nþ1

a¼0

ð�1Þa

a!
uðaÞðxÞ

Z
X
ðx� yÞa �/0

aðx; x� yÞdy
� �

;

ð11aÞ

uR1ðxÞ ¼
X2nþ1

a¼1

ð�1Þa

a!
uðaÞðxÞ

Z
X
�aðx� yÞa�1 �/1

aðx; x� yÞdy
� �

:

ð11bÞ

In view of relations (6) and (11), one may write

uR0ðxÞ ¼
X2nþ1

a¼0

ð�1Þa

a!
uðaÞðxÞ

Xn

s¼0

nsðxÞmaþsðxÞ
" #

; ð12aÞ

uR1ðxÞ ¼
X2nþ1

a¼0

ð�1Þa

a!
uðaÞðxÞ

Xn

s¼0

�agsðxÞmaþs�1ðxÞ
" #

; ð12bÞ

where mk(x) is the kth moment of the kernel function

mkðxÞ ¼
Z

X
ðx� yÞk/aðx� yÞdy: ð13Þ
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