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ARTICLE INFO ABSTRACT

Despite the concerns of time trend in subject profiles, the use of Bayesian response adaptive randomization
(BRAR) in large multicenter phase 3 confirmative trials has been reported in recent years, motivated by the
potential benefits in subject ethics and/or trial efficiency. However three issues remain unclear to investigators:
1) among several BRAR algorithms, how to choose one for the specific trial setting; 2) when to start and how
frequently to update the allocation ratio; and 3) how to choose the interim analyses stopping boundaries to
preserve the type 1 error. In this paper, three commonly used BRAR algorithms are evaluated based on type 1
error, power, sample size, the proportion of subjects assigned to the better performing arm, and the total number
of failures, under two specific trial settings and different allocation ratio update timing and frequencies.
Simulation studies show that for two-arm superiority trials, none of the three BRAR algorithms has predominant
benefits in both patient ethics and trial efficiency when compared to fixed equal allocation design. For a specific
trial aiming to identify the best or the worst among three treatments, a properly selected BRAR algorithm and its
implementation parameters are able to gain ethical and efficiency benefits simultaneously. Although the si-
mulation results come from a specific trial setting, the methods described in this paper are generally applicable
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to other trials.

1. Introduction

Bayesian response adaptive randomization (BRAR) has been utilized
in early phase trials motivated by potential benefits in trial efficiency
and/or patient ethics [1,2]. However, its use in large confirmative
phase 3 trials is controversial [3-9]. For two-arm trials, previous re-
search indicated that BRAR may lead to power reduction due to treat-
ment allocation imbalances [10], may assign more patients to the in-
ferior treatment arm due to the allocation ratio variation [11], and may
introduce bias in the treatment effect estimation [12]. For multi-arm
trials, it is recognized that the performance of BRAR varies based on the
adaptation algorithm and the trial setting, and under some scenarios it
may provide benefits in patient ethics and trial efficiency simulta-
neously [13,14,15,16]. For example, Connor et al. reported a simula-
tion study for a three-arm comparative trial, and found that BRAR could
randomize a higher proportion of subjects to a better performing arm
with a higher power and smaller sample size, as compared to the fixed
randomization [14]. Nevertheless, in addition to the concern of a po-
tential time trend in subject profiles during the long period of the trial
[171, several important issues associated with the use of BRAR in large

phase 3 trials remain unclear to investigators. First, there are several
Bayesian response adaptation algorithms proposed in literature
[13,14,18]. For a specific trial, how should the investigator choose one
among them? Second, to implement a BRAR, when should the treat-
ment allocation ratio update start and how frequently should the allo-
cation ratio be updated? Some suggest to update the allocation ratio
every 100 subjects [14], while some others recommended to update the
allocation ratio for every one subject [11,18]. What is the impact of the
timing and frequency of the allocation ratio update on the operating
characteristics of the trial? Third, interim analyses are often conducted
in phase III. How should the efficacy and futility stopping boundaries be
specified so that the operating characteristics of different BRAR designs
can be evaluated appropriately? It is also worth noticing that some
multi-arm trials include a control arm [13,16], some others may not
[13]. Some trials aim to identify the best treatment [16], while some
others may target to identifying the best or the worst arm [14]. The
evaluation of a BRAR design under a specific trial setting may not ne-
cessarily generalize to other trials settings. Wathen and Thall et al. [19]
recently published on the use of a control in a multi-arm BRAR setting.
They showed that a control arm is important to include, however, a true
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control is not always feasible due to ethical reasons (i.e. life threatening
conditions).

In this manuscript, we further explore the performance of three
commonly used BRAR algorithms under the assumption of no time
trend, and examine the impact of the allocation adaptation frequency
and the burn-in period length via simulation studies. Performance of
the BRAR is evaluated by the proportion of subjects assigned to the
inferior arm, the total number of failures, type I error, power, and the
final sample size. When applicable, both the expected value and the
variance are included for each assessment. Section 2 reviews the ra-
tionale and commonly used algorithms of response adaptive randomi-
zation under the Bayesian framework. Section 3 presents the simulation
design, followed by the result in Section 4, and discussions in Section 5.

2. Background

Response adaptive randomization was originally motivated by pa-
tient ethics [20], which are measured by the proportion of patients
assigned to the better performing arm, known as the individual ethics,
and the total number of failures, known as the population ethics.

2.1. Three commonly used BRAR allocations

Thompson et al. defined a BRAR scheme as a function of the pos-
terior probability that one treatment is better than the other, i.e. ;=P
;> pr,k=1,2, - ,m;k = j), where p; and p; are the posterior success
probabilities for jth and kth treatments respectively [21]. To reduce the
allocation ratio variability, the square root transformation is employed.
Generalized to m-arm trials, the randomization probability for arm j is:
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It is known as the probability-weighted allocation [13], and is referred
to as BRAR (1/2) hereafter.

Thall et al. proposed a randomization algorithm by including the
current sample size proportion in the power transformation:
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here n is the current sample size and N is the trial's maximum sample
size [18]. This algorithm was named as the natural lead-in allocation by
Bello et al. [22], and is referred to as BRAR(1n/2N) hereafter. It tends to
reduce the allocation variability in the early phase of the trial, and yield
a better protection of the statistical power.

Conner et al. [13,14] developed an algorithm to incorporate the
precision of the posterior estimate,

|mVar (pj)/nj
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here Var(p;) is defined as variance of the posterior probability of success
for arm j. This scheme is named as the information-weighted allocation,
and is referred as BRAR(1/2, 0°) hereafter. It allows the allocation ratio
to be directed toward the treatment arm with the higher observed
success proportion, smaller sample size and lower precision (or greater
variance) of the treatment estimation [13,14].
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2.2. Implementation parameters

The performance of a BRAR can be affected by many implementa-
tion factors and trial design parameters; including the burn-in period
length, the frequency of allocation ratio update, the number of arms in
the trial, the maximum sample size, the number and timing of interim
analyses, the efficacy and futility stopping boundaries, and the treat-
ment efficacy profile. For instance, the pre-specified values of futility
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and efficacy stopping boundaries can affect the type I error and the
power of the trial. The recently reported simulation studies for Bayesian
adaptive designs use 99% [18] or 97.5% [14] as the efficacy stopping
boundary, which may lead to different type I error rates under different
trial design settings, making the power comparison of different trial
design less convincing. In the simulation studies, calibrated type I error
may be recommended so that the power comparison between different
trial designs could have a common base.

This manuscript will closely examine the impact of the factors in the
specific trial design settings.

3. Methods
3.1. Basic concepts for Bayesian adaptive design

Consider an m-arm trial with a binary endpoint. Let x; ; denote the
outcome of the ith patient in arm j, with i=1,2,...,n; and j=1,2,
...,m. Let x; ;=1 if the patient's response is a success, and x; ;=0
otherwise. The total number of successes is s; = Z:’il X;j. The prob-
ability of success for arm j has a uniform non-informative prior dis-
tribution p; ~ Beta(1, 1), assuming there is one success and one failure in
the two subjects prior to the start of the trial. After observing s; suc-
cesses from n; subjects, the posterior probability of success in arm j
follows a Beta distribution p;|s;,n;~ Beta(1 + s;,1 + n; — s;). If the ob-
jective of the study is to identify one most effective treatment among
the m arms, a trial is being considered as ‘success’ if its probability of
identifying the most (or least) effective treatment exceeds a cut-off
value, the posterior probability of treatment j being the most effective
arm exceeds y, which is the pre-specified efficacy stopping boundary.
We define an indicator function ¢(p;), the decision rule for concluding
trial efficacy is qo(pj) _ 1 Prp >. P Vik=1,2.,m,j#ky> y.

0 otherwise
Where v is set at a high probability cut-off value such as 0.99. The

power is defined as the expected probability of achieving a significant
(positive) result, = E(@(p))) = P(p(p) = 1).

A trial can also be stopped for futility after an interim analysis, based
on the predictive probabilities of having §; successes in the additional 7;
subjects for treatment j=1,2,...,m prior to reaching the maximum
sample size of the study. The number of additional successes follows a
beta-binomial distribution §j~betabin (7,1 + s;,1 + n; — s;). The value of
ii; can be determined by the remaining sample size and adaptive allocation
based on observed patients' response outcomes. The trial is stopped if none
of the treatment arms has a predictive probability greater than the pre-
specified futility stopping boundary. If the trial is not stopped, the treat-
ment allocation ratio will be updated based on the selected BRAR algo-
rithm and the posterior probabilities for each treatment arm.

3.2. Simulation trial design

Computer simulation studies are designed to evaluate the perfor-
mance of the three aforementioned BRAR algorithms (1-3) under two
trial scenarios; a two-arm trial with a maximum sample size of 300 to
identify the better performing arm and a three-arm trial with a max-
imum sample size of 720 to identify the most or the least effective
treatment. The three-arm trial setting mimics the Established Status
Epilepticus Treatment Trial (ESETT), a large multicenter phase 3 trial
funded by the National Institution of Neurological Disorder and Stroke
(NINDS) to determine the most or the least effective treatment among
fosphenytoin, levetiracetam, and valproic acid in patients with benzo-
diazepine-refractory status epilepticus older than age 2 years [14]. The
simulation procedure includes a burn-in period with a fixed equal al-
location ratio. After that, interim analyses are conducted based on the
pre-specified frequency, checking the efficacy and futility boundaries
based on the posterior probabilities and the predictive probabilities for
each arm. The efficacy boundaries for two-arm and three-arm trials are
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