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A B S T R A C T

Finding safe and effective treatments for acute heart failure syndrome (AHFS) is a high priority. More than
80% of patients with AHFS who present to emergency departments are treated identically with intravenous
diuretics, despite recognition of the syndrome’s heterogeneity. We hypothesize that matching patient pro-
files with “personalized” AHFS treatments will improve outcomes. Matching multiple heterogeneous clinical
profiles with a number of potentially effective treatments requires an adaptive trial design that can adjust for
these complexities. We propose a Bayesian response-adaptive randomization trial design for AHFS patients.
Baseline information collected for each patient with AHFS prior to randomization includes blood pressure,
renal function, and dyspnea severity. The primary outcome is discharge readiness within 23h of presentation
and no unplanned emergency visits or admissions for acute heart failure within 7days of discharge. We use
a Bayesian logistic regression model to characterize the association between primary outcome and patient
profile. We adaptively randomize patients to one of five treatments, basing the randomization probability
on the cumulative data from the ongoing trial and fitting results from the regression model. Simulations
show high probability of selecting the best treatment corresponding to the patient’s profile while allocating
more patients to the efficacious treatments within the trial.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Randomization ensures that the observed treatment effect is
attributable to the treatment itself rather than to confounding
elements, and is the hallmark of clinical trials assessing treatment
effects. Recently, the response-adaptive (RA) randomization scheme
has become popular in clinical research because of its flexibility
and efficiency [1–7]. Based on the accruing history of patient
responses to treatment, the RA randomization scheme adjusts the
future allocation probabilities, thereby allowing more patients to be
assigned to the superior treatment as the trial progresses. As a result,
RA randomization can offer significant ethical and cost advantages
over equal randomization. The Bayesian framework is particularly
suitable for RA designs because it can incorporate historical informa-
tion as a prior and allows for continually updating the model fitting
based on cumulative data observed over time [8,9].
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When we have more than one experimental treatment to test
against the traditional therapy, testing each treatment in separate
trials is inefficient and wasteful of limited resources. To address this
issue, many phase II designs for multiple treatments or combinations
have been proposed for oncology trials [7,10-12]. This paper is
motivated by the challenge of designing a randomized trial with mul-
tiple treatment arms for patients with acute heart failure syndrome
(AHFS). Heart failure affects nearly 6 million Americans and results
in nearly one million annual hospital discharges [13]. It is estimated
that by 2030, a 25% increase in the prevalence of AHFS will result
in an additional 3 million people afflicted [13,14]. The in-hospital
mortality reported in major registries ranges from 4–12%, and
may increase to 20–25% in high-risk subgroups [15–20]. Finding
safe and effective treatments for patients with AHFS is a critical
unmet need identified as a high priority by investigators of heart
failure [21,22]. Despite increasing recognition of disease hetero-
geneity and comorbidities in patients with AHFS, more than 80%
are treated homogeneously – with intravenous diuretics [15,23]. An
individualized approach that tailors therapy to improve symptoms,
minimize adverse events, and promote earlier discharge has not been
studied, largely due to significant limitations in current clinical trial

http://dx.doi.org/10.1016/j.cct.2016.11.002
1551-7144/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.cct.2016.11.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/conclintrial
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cct.2016.11.002&domain=pdf
mailto: dberry@mdanderson.org
http://dx.doi.org/10.1016/j.cct.2016.11.002


S. Wen et al. / Contemporary Clinical Trials 52 (2017) 46–53 47

design [24–27]. Such approaches study one therapy in a highly select
group of patients, and have limited ability to test multiple treatment
approaches within AHFS phenotypes, especially early in a patient’s
course when symptoms are maximal. It is critical to explore novel
approaches to improve clinical trial design.

Bayesian adaptive trial design is ideally suited for complex
diseases and allows for the study of multiple treatment options in
diverse patient phenotypes. After a burn-in period of equal treatment
assignment, the randomization scheme is continuously adapted such
that treatment allocation is directed toward a responding phenotype.
This approach has successfully answered complex hypotheses in
cancer trials, but represents an innovative and promising methodol-
ogy for other complex diseases such as AHFS [2,28]. Our design is fur-
ther based on a significant body of research suggesting an association
between initial AHFS therapy and near-term events [27,29,30]. This
strongly suggests that AHFS patients with hypertension benefit from
predominant vasodilator therapy, while those who are normoten-
sive may improve with aggressive diuresis [31,32]. We hypothesize
that “personalizing” AHFS treatments by matching patient profiles
with targeted treatment options will more rapidly alleviate symp-
toms, improve outcomes and serve as a well-defined model for
testing new therapies. We consider the following questions: For
any treatment that does not work in all patients, is there a sub-
set of patients in which it does work? Can we treat patients better
during the trial based on each patient’s profile? The Bayesian RA
randomization design is ideally suited for facing these voluminous
challenges. Bayesian RA designs use information existing at the ini-
tiation of the trial and combine it with data that accumulate during
the trial to identify which treatments are most beneficial for which
patients. Randomization is varied so that patients who are unlikely
to benefit from a particular treatment are less likely to receive that
treatment. Another benefit of this trial design is that ineffective
treatments can be dropped and alternatives added as the trial is
ongoing.

The remainder of this article is organized as follows. In Section 2,
we specify our models and describe the proposed trial design. In
Section 3, we evaluate the operating characteristics of the proposed
design through simulation studies. We conclude with a brief discus-
sion and comments in Section 4.

2. Methods

We implement a Bayesian RA randomization scheme in a clinical
trial design to screen for effective treatments and identify which
patient groups will and will not benefit from the treatments. To
illustrate this design, we use a trial of initial therapy in patients
who present to emergency departments with heart failure. The
first line of emergency treatment for these patients consists of
a diuretic (furosemide) and a vasodilator (nitroglycerin). The five
targeted treatments (Fig. 1) are low-dose diuretics plus intra-
venous (IV) vasodilator boluses (treatment 1), low-dose diuretics
plus IV vasodilator infusion (treatment 2), daily-dose diuretics plus
topical vasodilator (treatment 3), high-dose diuretics plus topical
vasodilator (treatment 4), and daily-dose diuretics plus IV vasodila-
tor infusion (treatment 5). A total of 1000 patients will be enrolled in
the study. All enrolled and eligible patients are required to undergo
baseline phenotype profile assessment before randomization. Specif-
ically, three phenotypes are assessed before randomization for all
enrolled patients: blood pressure (¿160 mm Hg vs ¡160 mm Hg),
renal function (glomerular filtration rate [GFR] ¡ 60 ml/min/1.73 m2

vs ¿60 ml/min/1.73 m2) and dyspnea severity (initial respiration
rate [RR] ¿ 24 breaths/min vs ¡24 breaths/min). Thus, this trial will
sequentially enroll patients and assign each patient to receive one of
five competing treatments based on his/her phenotype profile. Given

Fig. 1. Schematic of treatment combinations of nitroglycerin and furosemide dos-
ing and route (B=intravenous vasodilator bolus; I=intravenous vasodilator infu-
sion; T=topical vasodilator; R=regular/daily-dose diuretic; L=low-dose diuretic;
H=high-dose diuretic). The open circles are potential combinations not considered in
this trial.

five treatments and eight subgroups defined by patient phenotypes,
there are forty subgroups in this trial.

2.1. Probability model

The limited sample size and low prevalence of some phenotype
subgroups make it difficult to draw inferences for the low prevalence
subgroups when considered separately. We address this challenge
by using covariate analysis to borrow information across subgroups
to enhance the precision of the inference. We use a logistic regres-
sion model to evaluate the main effects of the five treatments and
eight patient phenotypes (covariates) and their interactions. Our for-
mulation of the model, which includes the treatment effects (bT),
covariate effects (bZ), and treatment-covariate interactions (bI), is
shown hereafter. For patient i,

logit (Pr(Yi = 1)) = b0 +
3∑

j=1

bZ
j Zij +

5∑
k=1

bT
k Tik +

3∑
j=1

5∑
k=1

bI
jkZijTik, (1)

where Yi is the response indicator that takes a value of 1 if the
ith patient is discharged within 23 h of presentation and has no
unplanned emergency visits or admissions for acute heart failure
within 7 days of discharge, Zij is the phenotype covariate j, and Tik is
the indicator for the kth treatment. To complete the Bayesian model
formulation, we assume that the parameters follow a multivari-
ate normal distribution with independent components. Historical
data or elicited information may be used to construct informative
priors on non-treatment parameters, such as the effects of phe-
notype covariates in the present setting. However, to ensure that
the trial design is both ethical and widely acceptable, we take the
prior of each component to be Normal(b̂MLE,s2), where b̂MLE is the
maximum likelihood estimators of the regression coefficients from
the run-in phase in this study (the first 200 patients) and s−2 ∼
Gamma(0.001, 0.001). This Bayesian structure via logistic regression
in the RA randomization design allows for borrowing strength of
information across patients who are receiving the same treatment
but have different phenotypes. Hence, the information obtained in
one subset of patients provides some information that is useful for
patients with similar phenotype profiles.
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