
Advances in Engineering Software 94 (2016) 1–13

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier.com/locate/advengsoft

An object-oriented symbolic approach to the automated derivation of

finite element contributions

R. Saad a, D. Eyheramendy b,∗, L. Zhang b

a Université Saint-Esprit de Kaslik, Jounieh, Lebanon
b LMA, CNRS UPR 7051, Centrale Marseille, Aix Marseille Université, 4 impasse Nikola Tesla, CS 40006, 13453 Marseille CEDEX 13, France

a r t i c l e i n f o

Article history:

Received 7 July 2015

Revised 18 December 2015

Accepted 15 January 2016

Available online 9 February 2016

Keywords:

Finite elements

Object-oriented programming

Symbolic computations

a b s t r a c t

In this paper, we present a symbolic approach to automating the elaboration of numerical tools for the

simulation of physical processes using the finite element method. We aim at developing a generic envi-

ronment to automate discretization schemes in the context of PDEs. The approach is implemented in a

consistent object-oriented tool built in Java. We propose a symbolic environment to automatically build

the symbolic forms of elemental contributions corresponding to a variational formulation. These contri-

butions are automatically introduced into a classical simulation tool. The basic object-oriented framework

covering the elaboration of the elemental contributions derived from the weak statement is briefly dis-

cussed. The approach can be naturally extended to any discretization model in space or time. This ap-

proach is illustrated by the example of hyperelasticity.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical simulation is a key tool in modern engineering to-

day. Engineers and researchers are faced with increasingly complex

problems. One aspect of this complexity is that simulation tools in-

volving different physics must be developed. A physical problem is

usually modeled by a set of equations: partial differential equa-

tions, ordinary differential equations, etc. A space and time dis-

cretization procedure is then applied to the mathematical model.

Some specific algorithms are needed to solve the problem (time

integration scheme, linearization procedure, etc.). Moreover, these

simulation tools which are integrated into computer systems can

themselves be complex (multiprocessor systems, computing grids,

etc.). In this context, the development of a finite element code

turns out to be a tough job as soon as complex formulations are

involved.

The traditional approach consists in either integrating the dis-

crete forms in a computer tool or developing homemade compu-

tational applications. Structured programming approaches, and in

particular object-oriented ones, have helped to significantly change

not only the design of mechanical simulation tools but also the

overall efficiency of the developments. It is clear that most of these

programming tasks usually made by hand can be automatized

∗ Corresponding author. Tel.: +33 4 84 52 56 26.

E-mail addresses: roysaad@usek.edu.lb (R. Saad), dominique.eyheramendy@

centrale-marseille.fr (D. Eyheramendy), lei.zhang@centrale-marseille.fr (L. Zhang).

which frees the engineer/researcher from fastidious programming

tasks, allowing him to concentrate on modeling tasks. This issue

of automation has been addressed since the 70s (see e.g. [30,43]

or more recently [10,27] or [29]) and even partially considered in

industrial software such as COMSOL (see e.g. [70]). The limit of

COMSOL is that specific numerical algorithms may be mandatory

to solve a special set of partial differential equations.

The approach we propose in this paper aims at allowing the

user of a finite element code to introduce new formulations in

simulation software, as in [10,27] and [29]. It can be considered

as a generalization of the work previously proposed in [10] and

an alternative to the work proposed in [10] and in [27]. The ap-

proach, applied here to the finite element method, allows the de-

velopment of finite element contributions in a symbolic form for

coupled partial differential equations, and their integration into a

classical finite element code. We have developed generic concepts

to automate the finite element discretization scheme. The approach

is based on a tensor mathematical formalism to describe the dis-

cretization of a variational formulation as in [28] or [29]. We in-

troduce an object-oriented framework that can handle the sym-

bolic developments of elemental contributions. The integration of

the elemental contributions into a classical finite element code is

automated. The code produced is compiled in a classical way. From

the point of view of the end-user, the derivation of a new formu-

lation consists of two steps. The first step is the construction of

each variational term, including both the choice of the discretized

terms and the generation of the symbolic forms of elemental

contributions. The second step is the automatic compilation of

http://dx.doi.org/10.1016/j.advengsoft.2016.01.010

0965-9978/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.advengsoft.2016.01.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/advengsoft
http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2016.01.010&domain=pdf
mailto:roysaad@usek.edu.lb
mailto:dominique.eyheramendy@centrale-marseille.fr
mailto:lei.zhang@centrale-marseille.fr
http://dx.doi.org/10.1016/j.advengsoft.2016.01.010


2 R. Saad et al. / Advances in Engineering Software 94 (2016) 1–13

these elemental forms in order to integrate them into a conven-

tional computer code.

In Section 2, we present a review of, first, the object-oriented

paradigm applied to computational mechanics and, second, sym-

bolic approaches in the context of computational mechanics. This

cover the main tracks in the structured approaches to design-

ing computation tools in mechanics and related topics. The sec-

tion is concluded with the description the proposed approach. In

Section 3, we describe the concepts of a generic approach for the

derivation of finite element formulations. We present the math-

ematical formalism on which the whole approach is based. The

trial example of linear elasticity is used to illustrate this formal-

ism. In Section 4, we introduce the object-oriented principles of

the new package. We describe the main objects and the class

hierarchy needed to manage the symbolic manipulations (repre-

sentation and computation of symbolic forms of the elemental

contributions). A trial illustration in linear elasticity is given. In

Section 5, we consider a step-by-step derivation of a formulation

for large strains in a hyperelastic material and some numerical

tests.

2. An overview of object-oriented computational approaches

and symbolic approaches

2.1. Object-oriented finite elements in mechanical engineering

Software engineering in computational mechanics has signifi-

cantly evolved since the 50s following the evolution of languages.

Until the 90s, the main approaches were based on procedural lan-

guages like Fortran, C or Pascal. At that time, the improvement of

code maintainability and extendibility was traditionally achieved

through the improvement of modularity. This could be obtained

using a sequentially organized code: sequential call to functions

or routines. Data structuring capabilities appeared when using lan-

guages such as C or Pascal providing sequential organization with

more adequate argument management capabilities. As software

complexity rapidly increased with the type of problem addressed,

code maintainability and extendibility have become very difficult

in this context. The application of object-oriented programming to

the finite element method emerged in the late 80s. The key con-

cept of object-oriented programming is the object. It is an entity

that contains both data (attributes) and actions (methods). Ob-

jects communicate with each other by sending messages. An ob-

ject is thus only an instance of class. Classes are organized in a

hierarchy that allows inheritance. Thus, object-oriented program-

ming offers a powerful alternative way of structuring codes. The

pioneering work of Miller [37] and of Rehak [46] presents some

basic structuring concepts of the Finite Element Method (FEM).

In [37], a LISP framework for finite element computations is de-

scribed. In [73], the properties of modularity and code reuse are

highlighted. In [65], the efficiency in maintenance and implemen-

tation is described as a key idea of the approach. The program de-

veloped is limited to linear elasticity. Roughly speaking, the main

objects proposed in these pioneering studies are related to basic

structures such as nodes and elements, and to some linear alge-

bra features. At the same time, complete approaches were devel-

oped for static and dynamic finite element analysis [3,8,49,57] and

[9]. The global structuring of the FEM for linear elasticity was ad-

dressed, new features were introduced, such as the object degree

of freedom in [57], and time integration algorithm objects. The

nonlinear FEM was addressed later, e.g. applied to elasto-plasticity

in [36]. One of the most complete approaches to nonlinear ma-

terial modeling was the one proposed in [4] and [20]. Note that

at the same time, some successful attempts to structure classical

FE codes were made: see e.g. SIC (Interactive System Design) [22]

and CAST3M [53]. In the latter, some structuring capabilities were

developed based on advanced memory management systems in

Fortran. However, the object-oriented design remains one of the

most efficient strategies to manage complexity,

Since its origin, object-oriented programming has been widely

applied in all the fields of computational mechanics and related

domains (see e.g. [17,32] for an attempt at a comprehensive

bibliography). We can mention a large number of papers covering

a wide range of applications and computing frameworks. Among

them, let us cite: numerical tools for linear algebra [56], creation

of interactive codes [33], integration of artificial intelligence in

finite element systems [58], fractures and damage problems [19],

parallel computing in solid and fluid mechanics [1], mechanics of

deformable solids in large transformations [48], multiphysics prob-

lems [7,15,51], contact problems [19] and [31]. This list, of course

non-exhaustive, shows that the object-oriented paradigm is now

in widespread use within the scientific computing community.

This object-oriented paradigm is today a popular modeling tool

to tackle the most challenging problems. Following the pioneering

work, new approaches were developed in the mid 90s, bringing

both additional structuring capabilities and better software inte-

gration. Among these approaches, the most popular is based on

the Java language. Roughly speaking, the key features of Java are:

- It is an object-oriented programming language allowing high

abstraction level data structures

- The Java virtual machine ensures a wide portability of the ap-

plications

- The Java platform provides a large number of predefined

classes: I/O, object persistency, networking, multiple process

management, GUIs development, security, internationalization,

etc.

Java initially retained some attention for its networking capabil-

ities and its easy Internet portability. E.g. in [44], a trial application

based on a boundary element method is proposed. Similarly, a

web-based application for fracture mechanics can be found in

[39]. In these studies, only a few innovative structuring features

are proposed. A unique way of using Java has been to use it to

couple and manage traditional codes written in C/C++/Fortran.

This permits the developers to use ancient codes or part of code

in coupled applications, preserving the original computational effi-

ciency. E.g. in [38], an interactive finite element application based

on a coupled C++/Java is described. Comparative tests with For-

tran and C are conducted on small problems using direct solvers

based on tensor computations; this aims at illustrating the high

efficiency computational potential of Java in the context of code

coupling. In order to go further, similar conclusions are drawn in

[5,13,24], where the good performances of a pure Java application

are exhibited on simple matrix/vector products. In [35], the devel-

opment of GUIs is put in prominent position on an unstructured

mesh generator. Most computational applications, including com-

putational mechanics applications, have been conducted within

the computer science community. In [45] and [52], CartaBlanca,

a Java environment for distributed computations of complex mul-

tiphase flows, is presented. This code is based on a finite volume

approach, and a Newton–Krylov algorithm solution scheme is

used. CartaBlanca exhibits good performances, as shown in [45]. A

similar environment is developed to simulate electromagnetisms

problems in [2]. Both applications show the high potential of the

approach to design more complex and general computational tools

in mechanics including complex parallelism paradigms. These de-

velopments exhibit the networking facilities provided by Java. The

efficiency of Java has been emphasized in numerous publications

focusing on various contexts of numerical analysis: direct solution

of linear systems [40], FFT and iterative and direct linear systems

solvers on Euler type flows [5], solution of Navier–Stokes flows

[24] and [47]. More recently in [41] and [42], the description of



Download English Version:

https://daneshyari.com/en/article/567951

Download Persian Version:

https://daneshyari.com/article/567951

Daneshyari.com

https://daneshyari.com/en/article/567951
https://daneshyari.com/article/567951
https://daneshyari.com

