
Extending parallelization of the self-organizing map by combining data
and network partitioned methods

Trevor Richardson a,⇑, Eliot Winer b

a Department of Computer Engineering, Human Computer Interaction, Virtual Reality Applications Center, 1620 Howe Hall, Iowa State University, Ames, IA 50011, USA
b Department of Mechanical Engineering, Computer Engineering, Human Computer Interaction, Virtual Reality Applications Center, 1620 Howe Hall, Iowa State University, Ames,
IA 50011, USA

a r t i c l e i n f o

Article history:
Received 16 February 2015
Received in revised form 16 April 2015
Accepted 5 May 2015
Available online 4 June 2015

Keywords:
GPU
Self-organizing map
Parallel computing
Neural network
Data visualization
High-dimensional data

a b s t r a c t

High-dimensional data is pervasive in many fields such as engineering, geospatial, and medical. It is a
constant challenge to build tools that help people in these fields understand the underlying complexities
of their data. Many techniques perform dimensionality reduction or other ‘‘compression’’ to show views
of data in either two or three dimensions, leaving the data analyst to infer relationships with remaining
independent and dependent variables. Contextual self-organizing maps offer a way to represent and
interact with all dimensions of a data set simultaneously. However, computational times needed to gen-
erate these representations limit their feasibility to realistic industry settings. Batch self-organizing maps
provide a data-independent method that allows the training process to be parallelized and therefore sped
up, saving time and money involved in processing data prior to analysis. This research parallelizes the
batch self-organizing map by combining network partitioning and data partitioning methods with
CUDA on the graphical processing unit to achieve significant training time reductions. Reductions in
training times of up to twenty-five times were found while using map sizes where other implementations
have shown weakness. The reduced training times open up the contextual self-organizing map as viable
option for engineering data visualization.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Many problems facing industry today are investigated using
data acquired through a number of mediums (e.g., sensor record-
ings or simulation results). Data is becoming cheaper to acquire
while at the same time becoming more accurate. Leveraging avail-
able data is increasingly important for remaining on industry’s cut-
ting edge. One problem continuing to emerge is the shear amount
and corresponding dimensional complexity of data being investi-
gated. No longer can basic plotting methods (e.g., orthogonal plots,
scatterplots, etc.) alone be relied upon to understand data charac-
teristics. Researchers have realized this for a number of years and
have developed many techniques in an effort to visualize growing
levels of data complexity [1–4]. A number of current techniques
map n-dimensional data sets into a two or three-dimensional rep-
resentation that is directly interpretable by human visual percep-
tion. If, for example, a seven variable data set is to be visualized,
it is common to set four or five of the variables to constant values
and then plot the remaining two or three dimensions using a

traditional graphing technique. This can be carried out multiple
times using permutations of the dimensions held constant in an
attempt to understand the complex relationship therein. This
becomes impossible to understand as the number of permutations
increase, leading to the necessity of new or further developed
techniques.

Much research has been conducted on multidimensional data
representations attempting to present pertinent data to a user
[5]. Methods like parallel coordinates [6], graph morphing [7],
and linking multiple visuals [1,8] lessen mental load on an investi-
gator by limiting the visual complexity displayed in a single view.
Each of the noted methods, however, remain difficult to interpret
for high levels of dimensionality. Pixel-based [9] techniques
approach the problem from a different direction by showing
massive amounts of data while limiting focus only to overall data
trends. In many cases a single choice from prior developed meth-
ods is not fully effective on its own. This has led to the develop-
ment of tools that integrate multiple visualization techniques [3]
into a suite of tools. Each of the methods noted, whether alone
or combined, provide insights into the data under investigation
but leave a large part of the complexity remaining for the
investigator to make inferences from.

http://dx.doi.org/10.1016/j.advengsoft.2015.05.003
0965-9978/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +1 (515) 294 3092.
E-mail address: trevorr@iastate.edu (T. Richardson).

Advances in Engineering Software 88 (2015) 1–7

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2015.05.003&domain=pdf
http://dx.doi.org/10.1016/j.advengsoft.2015.05.003
mailto:trevorr@iastate.edu
http://dx.doi.org/10.1016/j.advengsoft.2015.05.003
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


Kohonen’s Self-Organizing Map (SOM) [10] allows for
low-dimensional visualization of a high-dimensional space while
the data’s topology is preserved. It has been used extensively to
avoid many of the issues noted with modern data visualization
methods [11–14]. The Contextual SOM (CSOM) supplements the
standard SOM with the addition of a contextual label on the indi-
vidual nodes of the resulting SOM. Prior work showed that the
added contextual information allows an investigator to identify
characteristics of the data set that are otherwise extremely difficult
to find [15].

However, the original SOM method is a serial method and trains
the map one data point at a time. It can take hours to days for a sin-
gle 100,000 data set to train on a modern desktop computer. This
limitation has led to the development of a batch processing
method of training SOMs called batch-SOM [16]. The batch method
allows for faster convergence with large data sets by allowing the
independent processing of each data point in parallel. Prior litera-
ture [17–19] has shown training time reductions using the
batch-SOM in combination with the two parallelization techniques
commonly used to breakup the SOM training process: network
partitioning and data partitioning. These methods alone are useful
and can reduce training times, but are limited to certain cases as
will be described in the remaining sections. A new implementation
of the batch-SOM is developed in this work by combining network
partitioning and data partitioning and further parallelizing the net-
work partitioning method traditionally used.

1.1. Traditional self-organizing map

In 1982, Tuevo Kohonen modeled the human brain’s learning
processes in the cerebral cortex using an artificial neural network
[10]. The SOM uses an unsupervised learning strategy to train a lat-
tice of neurons. Determining the structure of the original neuron
lattice is done in a heuristic fashion by the investigator based on
data set size and dimensionality, for example. Each neuron i in
the lattice has its own weight vector w as shown in Eq. (1) with
the same dimensionality as each data point x as shown in Eq. (2).
This structure allows the SOM to scale to any dimensionality k as
shown in Eqs. (1) and (2).

wi ¼ hwi1;wi2; . . . ;wiki ð1Þ

x ¼ hx1; x2; . . . ; xki ð2Þ

SOM training involves two phases, ordering and convergence,
each containing many iterations through the data. The number of
iterations for the method to run is decided upon by the investiga-
tor. To begin an iteration, a data point is randomly selected from
the data set and is compared against each node in the map using
the Euclidean distance metric shown in Eq. (3). The neuron found
with the smallest Euclidean distance is determined to be the win-
ner or ‘‘activated’’ neuron.

Distance ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 �wi1Þ2 þ ðx2 �wi2Þ2 þ . . .þ ðxk �wikÞ2Þ

q
ð3Þ

With the winning node decided, the weight vector w of each
node in the surrounding neighborhood h of the map is ‘‘influenced’’
using Eq. (4) to have its values become more like the current data
point x. The influence’s magnitude depends on the neuron’s posi-
tion, ri, relative to the winning node’s position, rj, in the map as
well as the current number of training iterations n that have
elapsed. g is a time-varying learning rate and defines the amount
of the influence on neighboring nodes. The neighborhood influence
h is a Gaussian-based influence factor that effects nodes closer to
the winner more than those farther away. Learning rate and neigh-
borhood influence are shown in Eqs. (5)–(7) respectively.

wiðnþ 1Þ ¼ wiðnÞ þ gðnÞhj;iðnÞðxðnÞ �wiðnÞÞ ð4Þ

gðnÞ ¼ g0 � exp�n=k ð5Þ

rðnÞ ¼ r0 � exp�n=k ð6Þ

hj;iðnÞ ¼ exp
�kri � rjk2

rðnÞ2

 !
ð7Þ

Applying a label to each node of the map is referred to as the
Contextual Self-organizing Map (CSOM). When using the CSOM,
data points are passed into the SOM a final time to determine
the closest node, again using Euclidean distance. In the contextual
phase, the data point’s label is added to the activated neuron
instead of updating the neighborhood. Fig. 1 [20] shows an exam-
ple from Haykin that trained a CSOM using animal attributes. The
animal’s attributes make up the training data and the contextual
label is the animal’s name. The trained map shows groups of ani-
mals with similar attributes. Zebras, horses, and cows were
grouped together by the training. This group is noted by Haykin
as peaceful, four-legged large mammals.

1.2. Batch-SOM

Using the traditional SOM as described above, the map node
weights are updated after every data point. With the batch-SOM,
however, all data points are first evaluated (for their winner)
before updating the map [16]. Two types of parallelization become
possible using the batch formulation. First, because node updates
only occur once per iteration (as opposed to per data point), all
winning node calculations can be performed in parallel.
Secondly, the map itself can be parallelized because each node is
only required to perform a summation of the influence of all other
nodes. The formulation can be thought of as similar to a weighted
average being performed across the map. Eq. (8) shows the
batch-SOM equation for updating the weight vectors of each node
following a single map iteration where t0 and tf represent the start
and finish of the present iteration, respectively.

wiðtf Þ ¼
Pt0¼tf

t0¼t0
hjiðt0Þxðt0ÞPt0¼tf

t0¼t0
hjiðt0Þ

ð8Þ

1.3. Multi-core processing

The standard personal computer today often has between two
and eight cores that make up the CPU. The drive behind an increas-
ing number of cores has been due to the hardware venders begin-
ning to reach the limits of how much performance can be achieved
from each core. Multi-core processing has thus become the

Fig. 1. Contextual SOM showing separation of hunters, peaceful species, and birds
[20].

2 T. Richardson, E. Winer / Advances in Engineering Software 88 (2015) 1–7



Download English Version:

https://daneshyari.com/en/article/567957

Download Persian Version:

https://daneshyari.com/article/567957

Daneshyari.com

https://daneshyari.com/en/article/567957
https://daneshyari.com/article/567957
https://daneshyari.com

