
An in-core grid index for transferring finite element data across
dissimilar meshes

Daniele Scrimieri a,⇑, Shukri M. Afazov b, Svetan M. Ratchev a

a Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham, Nottingham NG7 2RD, UK
b The Manufacturing Technology Centre Limited, Pilot Way, Ansty Business Park, Coventry CV7 9JU, UK

a r t i c l e i n f o

Article history:
Received 20 January 2015
Received in revised form 2 May 2015
Accepted 2 June 2015
Available online 19 June 2015

Keywords:
Manufacturing chain
Simulation
Finite element data
Mesh mapping
Grid indexing
Nearest neighbour search

a b s t r a c t

The simulation of a manufacturing process chain with the finite element method requires the selection of
an appropriate finite element solver, element type and mesh density for each process of the chain. When
the simulation results of one step are needed in a subsequent one, they have to be interpolated and trans-
ferred to another model. This paper presents an in-core grid index that can be created on a mesh repre-
sented by a list of nodes/elements. Finite element data can thus be transferred across different models in
a process chain by mapping nodes or elements in indexed meshes. For each nodal or integration point of
the target mesh, the index on the source mesh is searched for a specific node or element satisfying certain
conditions, based on the mapping method. The underlying space of an indexed mesh is decomposed into
a grid of variable-sized cells. The index allows local searches to be performed in a small subset of the cells,
instead of linear searches in the entire mesh which are computationally expensive. This work focuses on
the implementation and computational efficiency of indexing, searching and mapping. An experimental
evaluation on medium-sized meshes suggests that the combination of index creation and mapping using
the index is much faster than mapping through sequential searches.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The manufacture of a product can involve the manufacture and
assembly of several components, each requiring the application of
a sequence of processes, integrated into a manufacturing chain.
The finite element method (FEM) is commonly used to simulate
every process of the chain, where a different modelling strategy
can be adopted for each process. A strategy includes the selection
of the most appropriate finite element solver, element type, ele-
ment density, mesh refinement and material model.

FEM has been widely applied in industry to simulate static,
dynamic, multi-physics and highly non-linear physical phenom-
ena. In particular, FEM has been used to simulate manufacturing
process chains, including forging, heat treatment and cutting of
stainless steel SS316L [1]; multi-stage forging processes of carbon
steel [2]; forming, material cutting and welding of frame structures
in the vehicle industry [3]; extrusion and friction stir welding [4];
metal forming assembly [5].

To simulate a manufacturing process chain, finite element (FE)
data may have to be transferred across different solvers and

meshes. These issues are addressed by Afazov et al. [6] in the
development of FEDES, an FE data exchange system.1 Afazov [7]
reviews some manufacturing process chains of aero-engine compo-
nents and their integration using FEDES. Tersing et al. [8] simulates
a manufacturing process chain of an aerospace component where
FEDES is used for FE data transfer.

FEDES can transfer FE data between meshes with 2D and 3D
solid linear and quadratic elements, including mixed element
types. FEDES can read and write files compatible with six commer-
cial packages, namely ABAQUS, ANSYS, DEFORM, Marc, Morfeo and
Vulcan. It can also use a neutral XML file that can be visualised
with the open source software ParaView. With relation to the
interoperability of simulation software, a method using regular
expressions to convert different types of file formats for finite ele-
ment meshes is presented in [9]. Many mesh frameworks have
been developed, including the Mesh-Oriented datABase (MOAB)
[10], which can store and interpolate structured and unstructured
mesh, and is optimised for efficiency in space and time. In MOAB,
physical access to a mesh does not occur through individual enti-
ties, but in chunks. However, the MOAB interface is very flexible
and supports individual entity access. GetFEM++2 is a generic and

http://dx.doi.org/10.1016/j.advengsoft.2015.06.001
0965-9978/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: Daniele.Scrimieri@nottingham.ac.uk (D. Scrimieri), Shukri.

Afazov@the-mtc.org (S.M. Afazov), Svetan.Ratchev@nottingham.ac.uk (S.M. Ratchev).

1 http://www.sourceforge.net/projects/fedes/.
2 home.gna.org/getfem/.

Advances in Engineering Software 88 (2015) 53–62

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2015.06.001&domain=pdf
http://dx.doi.org/10.1016/j.advengsoft.2015.06.001
mailto:Daniele.Scrimieri@nottingham.ac.uk
mailto:Shukri.Afazov@the-mtc.org
mailto:Shukri.Afazov@the-mtc.org
mailto:Svetan.Ratchev@nottingham.ac.uk
http://www.sourceforge.net/projects/fedes/
http://home.gna.org/getfem/
http://dx.doi.org/10.1016/j.advengsoft.2015.06.001
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


efficient open source library for FEM elementary computations and
offers interpolation methods and mesh operations.

In order to transfer an FE variable between a source and a target
mesh, FEDES reads the elements and nodes of both of them and the
values of the FE variable at the nodes of the source mesh. Solvers
calculate FE variables at either nodal or integration points. If a vari-
able (e.g. strain, stress) is calculated at integration points, the sol-
ver can usually obtain its values at nodal points by extrapolation.
When transferring variables such as strain and stress, also the inte-
gration points of the target mesh have to be read or calculated. This
is necessary because these variables are required by FE solvers to
be associated with integration points. Four mapping methods are
implemented in FEDES: a method using the nearest node, a method
using fields of points, a method using elements and a method using
the element shape function.

When transferring FE data across dissimilar meshes, a signifi-
cant computational effort is spent in searching the source mesh
for the nodes or elements specified by the mapping formulation.
A sequential search requires a considerable amount of time, partic-
ularly for large meshes (i.e. more than 500,000 elements). The
mapping time can be greatly reduced by creating a spatial index
on the source mesh and then conducting a local search in the index
instead of a sequential search in the entire mesh. Generally, a spa-
tial index enables a rapid response to spatial queries, considering
spatial relationships between objects such as points, lines, poly-
gons. In the case of finite elements, the indexed objects are nodes
and elements. Spatial data structures have been used extensively
in computer graphics, databases, pattern recognition, solid mod-
elling and other areas [11]. With relation to FE analysis, applica-
tions of spatial indexes include mesh generation [12], adaptive
mesh refinement [13] and spatial contact search [14].

This paper presents a technique for performing searches in
indexed meshes in order to map FE data between meshes within
a manufacturing process chain. The meshes can have different den-
sities or element types. An in-core grid index is created on the
source mesh. For each nodal or integration point of the target
mesh, the index on the source mesh is searched for a specific node
or element, in accordance with the mapping method. The tech-
nique has been implemented and tested in FEDES.

The remainder of this paper is organised as follows: Section 2
presents the indexing technique, Section 3 describes the mapping
methods employing the index structure, Section 4 contains an
evaluation of the performance of index creation and mapping,
Section 5 draws overall conclusions.

2. Indexing

The indexing technique that we propose partitions the 2- or
3-dimensional space underlying a mesh into a 2- or
3-dimensional orthogonal grid, respectively. The cells of the grid
are not required to be equal-sized. This means that the splitting
lines (for 2-dimensional meshes) or planes (for 3-dimensional
meshes) do not have to be equidistant. Consequently, auxiliary
structures, called scales, are necessary to specify the coordinates
of the lines or planes subdividing each dimension.

The index access structure allows rapid location of the cell con-
taining a given point and the points indexed in it. The spatial query
we are interested in is the nearest neighbour query. That is, given a
point in the underlying space, we want to find the nearest to it in
the index. Of course, if the point itself has been indexed, it repre-
sents the answer. Some variants of the nearest neighbour query
are employed in the mesh mapping methods described in this
paper. Some mapping methods need to know which nodes are con-
tained in a cell, while others need to know which elements are cov-
ered by a cell. Depending on the method, either a node index or an

element index is used. A node index associates nodes with cells. An
element index is a variation of a node index that contains also the
elements of the indexed nodes.

Cells point to buckets where references to indexed nodes are
stored. Each cell points to one bucket and several cells can point
to the same bucket. Thus, the correspondence between cells and
buckets is many-to-one. If some cells point to the same bucket
we say that they share it and that such a bucket is shared.
Similarly, a non-shared bucket is one that is pointed to by only
one cell. All the buckets have the same fixed size in terms of num-
ber of references to nodes. In this work, all the data is kept in the
main memory. Other solutions are also possible, where everything
is stored on the disk or the mesh is on the disk and only the index
structure is in-core.

The grid can be refined while indexing. An initial size is speci-
fied. While indexing nodes, new splitting lines or planes may be
added, thereby creating new cells and increasing the grid size. A
refinement occurs when a non-shared bucket overflows, i.e. a node
being indexed cannot be inserted in it because it is full. A splitting
line or plane passing through the cell pointing to the overflowing
bucket is added. The overflowing bucket is also split into two.
The following subsections describe in detail the indexing and split-
ting process.

The use of fixed-sized buckets and the splitting mechanism
enable the grid to reflect the level of refinement of the mesh in
every location. That is, the more refined the mesh is in a certain
location, the more cells and buckets will be created in the corre-
sponding location in the grid.

Our approach is similar to the grid file of Nievergelt et al. [15], a
database system where a directory associates each cell with a data
bucket stored on a disk page. The grid file guarantees that a data
item can be retrieved with only 2 disk accesses, one to the direc-
tory and one to the bucket. Another technique, called EXCELL, with
the same objective of minimizing the number of disk accesses, is
described in [16]. The difference from the grid file is that cells
are equal-sized, so there is no need to maintain auxiliary structures
to locate them. An index with equal-sized cells for FE data transfer
is described in [17]. Although with this technique the identification
of cells is faster (as it takes constant time), a refinement requires
the splitting of all the cells to maintain the equal-size property.
Therefore, at each refinement the number of cells doubles. With
the method presented in this paper, a refinement involves only
the introduction of a splitting line or plane and the update of the
corresponding scale.

2.1. Grid representation

A 2- or 3-dimensional grid is represented by a 2- or
3-dimensional array, respectively. Each element of the array repre-
sents a cell of the grid, identified by the element’s coordinates, and
contains a pointer to the cell’s bucket. When a 2-dimensional grid
is refined, a new row or column is inserted in the array. When a
3-dimensional grid is refined, a new 2-dimensional array, a ‘‘slice’’,
is inserted along one dimension. Insertion is performed by allocat-
ing a larger memory area and copying the cells’ pointers. Since this
operation is computationally expensive, the indexing mechanism
tries to reduce the number of times it is required.

2.2. Scale representation

A grid spans a bounded interval along each dimension. A scale
specifies the intervals into which a dimension of the grid is parti-
tioned and the coordinate of each interval in the grid along the par-
titioned dimension. When a new splitting line or plane is added to
the grid along one dimension, the corresponding scale is updated
to reflect the change. Initially, all the splitting lines/planes are

54 D. Scrimieri et al. / Advances in Engineering Software 88 (2015) 53–62



Download English Version:

https://daneshyari.com/en/article/567961

Download Persian Version:

https://daneshyari.com/article/567961

Daneshyari.com

https://daneshyari.com/en/article/567961
https://daneshyari.com/article/567961
https://daneshyari.com

