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a b s t r a c t

The development of Jacobian-free software for solving problems formulated by nonlinear partial differ-
ential equations is of increasing interest to simulate practical engineering processes. For the first time,
this work uses the so-called derivative-free spectral algorithm for nonlinear equations in the simulation
of flows in porous media. The model considered here is the one employed to describe the displacement of
miscible compressible fluid in porous media with point sources and sinks, where the density of the fluid
mixture varies exponentially with the pressure. This spectral algorithm is a modern method for solving
large-scale nonlinear systems, which does not use any explicit information associated with the Jacobin
matrix of the considered system, being a Jacobian-free approach. Two dimensional problems are pre-
sented, along with numerical results comparing the spectral algorithm to a well-developed Jacobian-free
inexact Newton method. The results of this paper show that this modern spectral algorithm is a reliable
and efficient method for simulation of compressible flows in porous media.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The simulation of the flow of miscible fluids through porous
materials takes place in several situations of interest in applied sci-
ences and engineering, as in oil recovery, subsurface contaminant
transport and remediation, supercritical extractions, chromatogra-
phy processes, etc. In fact, after the initial stages of oil extraction,
the enhanced oil recovery techniques use injections of fluids that
seek to reduce the viscosity of the resident oil and improving the
flow. In general, these fluids comprise gases or liquids that are
miscible with oil, such as carbon dioxide, nitrogen, gels, polymer
solutions, and other. A large number of chemical substances
commonly used in the industrialized world have their fate in the
environment. Such events that occur intentionally or accidentally
include fertilizer and pesticide applications in agriculture, leaks
in industrial (and residential) facilities used for the disposal of
waste, and inappropriate choices of waste disposal sites. These
chemicals often contaminate sources of subsurface water. Thus,
to simulate such events, many of these processes are modeled as
the flow of miscible fluids, water and a solute. Various processes
for remediation of soil and ground water that use injections of

solvents can also be described by these miscible models. In chem-
ical engineering, the study of miscible flows in porous media is
important in many practical situations, such as the simulation of
supercritical processes used in the extraction of natural products.
As an example, we can cite the extraction of caffeine from the
injection of carbon dioxide in a supercritical state. In applied ana-
lytical chemistry, the flows in porous columns, used in chromatog-
raphy processes, are in general miscible, where the injected fluid
(eluent) can be in a supercritical state.

Generally, the mathematical models used to describe these
complex processes are formulated by nonlinear partial differential
equations [3,7], which can present solutions with singularities in
the injection and production wells.

Thus, the discretization of these problems (governed by nonlin-
ear differential equations) leads to large nonlinear systems of alge-
braic equations. These equations are commonly solved using the
classical Newton method [1]. In spite of this, the convergence of
the Newton method depend on the location of the starting point;
this iterative method is attractive because it usually presents a
local quadratic rate of convergence [9]. However, to simulate the
dynamic evolution of the flow, at each time step the Newton
method requires the solution of a number of linear systems, where
the Jacobians of the nonlinear system evaluated at the current
points are the coefficient matrices, which are generally large and
sparse.
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To minimize the computational cost spent on resolutions of
such linear systems, in recent years some researchers in this area
have used inexact Newton methods, [4,8,14,16]. Such inexact
methods are variants of the Newton method, where linear systems
are solved only approximately [10,12,13], what is commonly done
using a Krylov method [15].

The Derivative-Free Spectral Algorithm for Nonlinear Equations
(DFSANE) is a modern method for solving large-scale nonlinear
systems, developed from the spectral gradient method [2,21],
which does not solve linear systems, nor use any explicit informa-
tion associated with the Jacobin matrix, being a Jacobian-free
approach with a solid theoretical foundation [17].

The objective of this work is to study the performance of the
DFSANE in the numerical simulation of miscible compressible fluid
flows in porous media, where the model used considers point
sources and sinks, possible large adverse mobility ratio and aniso-
tropic dispersion in tensor form. Furthermore, in this model the
density of the fluid mixture varies exponentially with the pressure.
In addition, using a pseudo-language, all the algorithms discussed
here will be presented in a clear and well-established form, in
order to facilitate future applications to engineering problems.

For this, two dimensional problems are presented, along with
numerical results comparing the DSANE to a Jacobian-free inexact
Newton method.

The remainder of this paper is organized as follows. In Section 2,
we describe the mathematical model for the miscible compressible
fluid flows in porous media. Section 3 is devoted to the presenta-
tion of the DFSANE. In Section 4 we report the numerical results
and comparisons. The conclusions are given in Section 5.

2. The mathematical model

In this section, we describe the differential equations that
model the isothermal compressible fluid flows in porous media.
In addition, we include a discretized form of this mathematical
model, which was used to test the spectral method for nonlinear
systems of interest here.

We consider flows of binary mixtures (an invading fluid plus a
resident fluid) through porous materials associated with processes
where the invading fluid and the resident fluid are fully miscible,
and flow together as one-phase fluid. Here, these processes are
described by the mass conservation equations for the invading
fluid and for the mixture, Darcy’s law, and an equation of state,
which will provide the thermodynamic properties of the binary
mixture [3,7].

Let w be the mass fraction of the invading fluid in the mixture,
and t the time. Then, the mass conservation equations of this
species is given by

/
@ðqwÞ
@t

þr:ðqwuÞ � r:ðqDrwÞ ¼ wq; ð1Þ

where / is the porosity of the porous material, q is the mass density
of the fluid mixture, q is the source (or sink) term that represents
the mass flow rate per unit volume injected into (or produced from)
the porous medium, D denotes the tensor of the mass diffusive-
dispersive flux of the invading fluid, and u is the velocity of the fluid
mixture. Here, this velocity is described using a differential form of
Darcy’s law,

u ¼ � k
l
rP; ð2Þ

which disregards gravity effects. In Eq. (2) k is the permeability of
the porous medium, l and P are, respectively, the viscosity and
pressure of the binary mixture. The governing differential equation

that describes the conservation of mass for the total fluid mixture is
given by

/
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The viscosity of binary mixture depends on the mass fraction w,
being described by the following mixing rule [22],

lðwÞ ¼ lr

ð1�wÞ þwðlr=liÞ
1=4

h i4 ð4Þ

where li and lr are, respectively, the viscosities of the invading and
resident fluids.

The density q depends only on the pressure of the fluid, and
obeys the equation of state [7],

qðPÞ ¼ qref e
cf ðP�Pref Þ; ð5Þ

where qref is the value of q at a reference pressure Pref, and cf is the
compressibility of the fluid.

For a two-dimensional velocity field of the type u = u1 i + u2j

(where i and j are the unit vectors in x-direction and y-direction,
respectively), the diffusion–dispersion tensor D takes the form
shown in [19],
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where, from Eq. (2), we have
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In Eq. (6), the scalar dM is the coefficient of molecular diffusion, and
aT and aL are, respectively, the transverse dispersivity and longitu-
dinal dispersivity of the invading fluid. The coefficient dM has
dimension of area per unit time, while aT and aL have dimensions
of length.

Let X be the spatial domain representing the porous medium,
whose boundary is denoted by oX. The boundary conditions are
those that describe the absence of flow in the borders of X:

qu � n ¼ 0; at @X; for all t � 0; ð9Þ

ðqwu� qDrwÞ � n ¼ 0; at @X; for all t � 0; ð10Þ

where n is the unit vector normal to oX.
Here, the spatial domain X is (essentially) two-dimensional.

This rectangular domain (supposedly horizontal) will be denoted
by X = [0, Lx] � [0, Ly], where Lx and Ly are the lengths of the sides
of this rectangular region in x-direction and y-direction, respec-
tively. For the spatial discretization, we use a uniform block-cen-
tered grid. Thus, given two integers nx and ny, this grid will be
described by bX ¼ ðxi; yjÞ 2 R2; i ¼ 1; . . . ;nx and j ¼ 1; . . . ;ny

� �
,

with xi = (i � 1/2)Dx and yj = (j � 1/2)Dy, such that Dx = Lx/nx and
Dy = Ly/ny. Each point ðxi; yjÞ 2 bX represents a node of the block-
centered grid, where the values of the unknown functions of
the problem in question are effectively calculated. Given xi+1/2 =
xi + Dx/2, yj-1/2 = yj � Dy/2, etc., the set bXij ¼ ½xi�1=2; xiþ1=2� �
½yj�1=2; yjþ1=2� denotes a block of bX, whose node is the point (xi, yj).
Thus, we have nx � ny discretization blocks. The temporal domain
is represented by a closed interval [t0, tf], where tf denotes the final
time and t0(=0) is the initial time. Given an integer nt, this interval
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