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a b s t r a c t

In this study, we have thoroughly researched on performance of six state-of-the-art Multiobjective Evo-
lutionary Algorithms (MOEAs) under a number of carefully crafted many-objective optimization bench-
mark problems. Each MOEA apply different method to handle the difficulty of increasing objectives.
Performance metrics ensemble exploits a number of performance metrics using double elimination
tournament selection and provides a comprehensive measure revealing insights pertaining to specific
problem characteristics that each MOEA could perform the best. Experimental results give detailed
information for performance of each MOEA to solve many-objective optimization problems. More
importantly, it shows that this performance depends on two distinct aspects: the ability of MOEA to
address the specific characteristics of the problem and the ability of MOEA to handle high-dimensional
objective space.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Evolutionary algorithms (EAs) with meta-heuristic character
and population-based property provide powerful search ability to
generate both converged and diversified Pareto-optimal fronts in
multiobjective optimization problems (MOPs), which generally
involve two or three conflicting objectives. On the other hand,
there are many real-world problems with multiple conflicting
objectives (in most cases, more than five) needed to be optimized
simultaneously, which are called many-objective optimization
problems (MaOPs). In the literature, Multiobjective Evolutionary
Algorithms (MOEAs) have been effectively applied to search for
the Pareto-optimal fronts in MOPs, but render much worse perfor-
mance in MaOPs [1]. This subject has been gaining an increasing
interest in recent years. Compared with low-dimensional MOPs,
the curse of dimensionality in MaOPs has presented several chal-
lenges for MOEAs.

First, in MaOP, Pareto optimality loses its selection pressure in
the evolution process due to the increasing number of objectives.
In MOPs, Pareto optimality based MOEAs, such as NSGA-II [2]
and SPEA2 [3], perform very well in that Pareto optimality is effec-
tive to select nondominated individual and facilitates the conver-
gence of the population in low-dimensional space. However, in
high-dimensional space, the proportion of nondominated individuals

rises quickly with the number of objectives [4]. This leads to severely
diminishing selection pressure during the evolutionary process no
matter how the MOEA is designed, if it is based on Pareto dominance
relation.

Second, the high-dimensional objective space of MaOP is extre-
mely large. This large search space makes it difficult to determine
the population size in the evolution process. If the population size
is too small, the evolution process will prematurely approach the
local Pareto solutions, making the whole population settle into
local fronts. Also, the small population size makes most of solu-
tions apart from each other. It becomes hard to measure the diver-
sity of the whole population. On the other hand, if the population
size is too large, the huge computation effort will paralyze the evo-
lution process. Meanwhile, even with the large population size,
two distant solutions may still generate offsprings far from them.

Besides the deficiency in the definition of Pareto dominance and
extremely large objective space stated above, other complications
such as visualization of high-dimensional objective spaces [1]
and a very high computational cost (due to a large number of indi-
viduals needed to obtain a good representation of the Pareto front)
[5] have contributed to the challenges in solving MaOPs.

From the above discussions, difficulties caused by a large num-
ber of objectives have rendered the existing MOEAs ineffective to
solve MaOPs. The efforts in addressing this issue have led to the
developments of new algorithms, often called Many Objective Evo-
lutionary Algorithms (MaOEAs). In literature, there are mainly four
types of MOEAs that have been proposed to solve MaOPs.
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First, MOEAs are constructed using modified Pareto dominance
design. The relaxing form of the Pareto dominance including Pareto
a-Dominance [6], Pareto e-Dominance [6], and Pareto cone e-
Dominance [6] makes one individual dominates others easier in
high-dimensional space by the heuristically chosen parameters.
Based on this idea, e-Domination Based Multi-Objective Evolution-
ary Algorithm (e-MOEA) [7] is proposed and shows a good perfor-
mance [8]. On the other hand, fuzzy concept is incorporated into
Pareto dominance for new fitness evaluation mechanism to contin-
uously differentiate individuals into different degrees of optimality
beyond the classification of the original Pareto dominance. Based
on it, a fuzzy Pareto dominance (FD) relation is defined and incor-
porated into the designs of NSGA-II, so called FD-NSGA-II [4].

The second class is based on the idea of performance indicators.
For example, Hypervolume Estimation Algorithm for Multiobjec-
tive Optimization (HypE) [9], has been shown to be effective in
solving MaOPs. Also, there are some other designs in a similar
spirit such as Indicator-Based Evolutionary Algorithm (IBEA) [10]
and SMS-EMOA [11].

The third class is decomposition based designs, such as multi-
objective evolutionary algorithm based on decomposition
(MOEA/D) [12] and reference-point based many-objective NSGA-
II (MO-NSGA-II) [13]. This type of methods decomposes a multiob-
jective optimization problem into a number of scalar optimization
subproblems and optimizes them simultaneously. In the evolution
process, aggregation functions, such as Tchebycheff in [12] and
Achievement Scalarizing Function in [13], are applied for fitness
assignment and individual selection instead of Pareto-dominance.
Nowadays, this method is very popular to solve MaOPs.

The last class is the grid-based method. From [14], a grid can
reflect the status of both convergence and diversity simulta-
neously. Grid-Based Evolutionary Algorithm (GrEA) [14] exploits
this grid approach to strengthen the selection pressure toward
the optimal direction, while maintaining an extensive and uniform
distribution among solutions. Territory Defining Multiobjective
Evolutionary Algorithm (TDEA) [15] defines a territory around each
individual to prevent crowdness in any region.

Although numerous MOEAs exist for many-objective optimiza-
tion problems, there is no comprehensive study conducted to
reveal advantages and weaknesses of the underlying MOEAs and
at determining the best performance algorithm to specific class
of problem characteristics [16]. Recently, multiple comparisons
between latest improvements on NSGA-II and MOEA/D for many-
objective optimization problems have been made in [17–19]. In
those experiments, only single performance metric is used therein.
However, every metric can merely provide some specific, but
incomplete, quantifications of performance and can only be effec-
tive under specified conditions. For a specific test problem, we can-
not ascertain which metrics should be applied in order to faithfully
quantify the performance of MOEAs. The conclusion, if any is
drawn, is often indecisive and reveals no additional insight per-
taining to the specific problem characteristics that proposed MOEA
would perform the best [20,21].

To overcome these deficiencies and arrive at a fair evaluation of
MOEAs, performance metrics ensemble with double elimination
tournament [22] is used in this research work. The ensemble
method uses multiple metrics collectively to obtain a better assess-
ment than what could be obtained from any single performance
metric alone. Metrics ensemble not only can give a comprehensive
comparison between different algorithms, but avoid the choosing
process and can be directly used to assessing MOEAs.

In the remaining paper, Section 2 provides the literature review
on the MOEAs for comparison. In Section 3, we give detailed infor-
mation for performance metrics. Section 4 describes the perfor-
mance metrics ensemble approach in detail, including the double
elimination tournament selection operator. In Section 5, we

elaborate on the experiment results for selected benchmark prob-
lems. Finally, a conclusion is drawn in Section 6 along with perti-
nent observations.

2. Literature review on many-objective evolutionary algorithms

In this study, six state-of-the-art MOEAs are chosen for compe-
tition. They are FD-NSGA-II [4], HypE [9], MOEA/D [12], GrEA [14],
e-MOEA [7], and MO-NSGA-II [13]. Here, FD-NSGA-II is of the first
type of algorithms modifying Pareto dominance. HypE based on
performance indicator comes from the second type. MOEA/D is
the decomposition-based method and belongs to the third type.
The grid-based method GrEA is from the fourth type. e-MOEA
not only modifies the Pareto dominance, but also uses the grid to
improve the diversity, so it is a combination of both the first and
the fourth types. MO-NSGA-II is also a hybrid method and contains
both decomposition and grid ideas from the third and the fourth
types, respectively. A brief overview of each chosen MOEA is given
below.

FD-NSGA-II is the improved NSGA-II by adopting the fuzzy Par-
eto dominance relations and the corresponding fuzzy fitness
assignment process. In the proposed design, fuzzy Pareto domi-
nance relation is applied to determine the rank value of each indi-
vidual instead of Pareto dominance in the original NSGA-II. After
the rank value is determined, the same crowding-distance is used
as the original design of NSGA-II. The fuzzy fitness assignment pro-
cess ensures one individual is fuzzy nondominated with respect to
others in the same rank.

HypE is a hypervolume-based evolutionary many objective
optimization algorithm. It applies Monte Carlo simulation to
approximate the exact hypervolume value, and assigns ranks of
solutions induced by the hypervolume indicator. These ranks of
solutions can be used in fitness evaluation, mating selection,
and environmental selection. Overall, it balances the accuracy of
the estimates and the computation cost of the Hypervolume
calculation.

MOEA/D decomposes a MOP into a number of scalar optimiza-
tion subproblems and optimizes them simultaneously. Each sub-
problem has a different weight vector and a single solution. For
each subproblem, a certain number of the nearest subproblems
are defined as its neighbors based on the Euclidean distance
between their weight vectors. Each subproblem is optimized by
only using information from its several neighboring subproblems.
For each subproblem, a new solution is generated by current solu-
tions in its neighboring subproblems and is compared with current
solutions in the neighboring subproblems.

Grid-Based Evolutionary Algorithm (GrEA) exploits the poten-
tial of the grid-based approach to strengthen the selection pressure
towards the global Pareto front while maintaining an extensive
and uniform distribution among solutions. Two concepts, grid
dominance and grid difference, were introduced to determine the
mutual relationship of individuals in a grid environment. Then,
three grid-based criteria, grid ranking, grid crowding distance,
and grid coordinate point distance, are incorporated into the fit-
ness of individuals to distinguish them in both the mating and
environmental selection processes. GrEA uses the basic framework
of NSGA-II while modifying three main steps of evolution process:
fitness assignment, mating selection, and environmental selection.

e-MOEA is a steady-state algorithm based on the e-dominance
relation. It divides the objective space into hyperboxes by a size
of e. Each hyperbox is assigned at most a single solution on the
basis of e-dominance. From [7], e-MOEA provides a tradeoff among
convergence, diversity, and computational time. Furthermore, it
could be made interactive with a decision-maker which implies e
can be chosen by decision-maker according to user’s preference.
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