
ESFM: An Essential Software Framework for Meshfree Methods

Yo-Ming Hsieh, Mao-Sen Pan ⇑
Department of Construction Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan

a r t i c l e i n f o

Article history:
Received 6 November 2013
Received in revised form 31 May 2014
Accepted 16 June 2014
Available online 11 July 2014

Keywords:
Meshfree methods
Meshless methods
Software framework
Object-oriented design
Design pattern
Weak-form

a b s t r a c t

This paper describes an Essential Software Framework for Meshfree Methods (ESFM). Through thorough
analyses of many existing meshfree methods, their common elements and procedures are identified, and
a general procedure is formulated into ESFM that can facilitate their implementations and accelerate new
developments in meshfree methods. ESFM also modulates performance-critical components such as
neighbor-point searching, sparse-matrix storage, and sparse-matrix solver enabling developed meshfree
analysis programs to achieve high-performance. ESFM currently consists of 21 groups of classes and 94
subclasses, and more algorithms can be easily incorporated into ESFM. Finally, ESFM provides a common
ground to compare various meshfree methods, enabling detailed analyses of performance characteristics.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Over the past two decades, the meshfree method is an active
and popular research topic in many fields. Due to their meshless
nature, meshfree methods can yield more accurate solutions than
FEM (finite element methods), and they have other advantages
[1–3] over FEM such as: (1) avoiding the manual effort in designing
appropriate FE (finite element) meshes, (2) evading element distor-
tion issues seen in large deformation problems [4–9], and (3) sim-
ulating crack propagations with ease [9–14]. Many literatures on
meshfree methods have been published, and some important over-
view or comparison papers have been organized and discussed
[15–19]. In contrast, very few studies have discussed implementa-
tions of meshfree methods. Most open literatures associated with
implementation issues of meshfree methods focus on the construc-
tion of shape functions [20,21], and some discusses one particular
flavor of meshfree methods [17,22,23]. Some open source or public
domain codes for meshfree or related methods [24–31] were
developed to demonstrate new procedures or new methods such
as IGA (isogeometric analysis) using Matlab or Octave. Using these
software packages for developing meshfree methods is convenient
and keeps researchers focus on developing the meshfree method
from mathematical perspectives. However, it becomes impossible
to explore how data structures (such as sparse-matrix storage)
can affect performance of developed meshfree analyses.

Furthermore, most current implementations of meshfree methods
do not necessarily consider best practices in software engineering,
such as design patterns [32] and code reuse. No publication to date,
to author’s knowledge, discusses software framework for meshfree
methods developed in C++. There are several advantages using C++

for development. First, programs developed in native languages
such as C++ typically perform much faster than those developed
in interpreted languages do. Furthermore, many parallel comput-
ing toolkits or technologies such as OpenMP [33], CUDA [34], Intel
Thread Building Blocks [35], and Thrust [36], are only available to C
and C++. Therefore, using C++ for development enables the use of
these parallel computing toolkits or libraries.

This paper presents an Essential Software Framework for Mesh-
free Methods (ESFM), which supports implementing many basic
meshfree methods and their associated numerical algorithms. It
is intended for ESFM to solve partial differential equations raised
from various physical problems, such as solid mechanics, and heat
conduction, using different flavors of meshfree methods. As a
result, many meshfree methods, numerical methods, and formula-
tion methods need to be considered into ESFM. We believe ESFM
provides a logical and well-organized framework to fulfill the
aforementioned goals, and it is the first of its kind in the context
of meshfree methods, while many other software frameworks
were developed for finite element method [37–57] or for discrete
element method [58,59].

It is believed the ESFM cannot only facilitate the development of
programs using meshfree methods, but also stimulate new
research and development efforts in this field. During the develop-
ment of ESFM, extensive use of (1) object-oriented analysis and

http://dx.doi.org/10.1016/j.advengsoft.2014.06.006
0965-9978/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +886 227333141.
E-mail addresses: ymhsieh@mail.ntust.edu.tw (Y.-M. Hsieh), d9505503@mail.

ntust.edu.tw (M.-S. Pan).

Advances in Engineering Software 76 (2014) 133–147

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2014.06.006&domain=pdf
http://dx.doi.org/10.1016/j.advengsoft.2014.06.006
mailto:ymhsieh@mail.ntust.edu.tw
mailto:d9505503@mail.ntust.edu.tw
mailto:d9505503@mail.ntust.edu.tw
http://dx.doi.org/10.1016/j.advengsoft.2014.06.006
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


design (OOAD) and (2) well-known design patterns [32] allows
ESFM inherit benefits of being extensible and maintainable from
object oriented programming (OOP). Furthermore, with carefully
structured class hierarchy, new development can be achieved with
less coding effort by reusing most of the developed classes. Fur-
thermore, the framework is validated by implementing a program
for solving plane-stress beam problem well documented in most
literatures using three different meshfree methods.

The rest of this paper is organized as the following: Section 2
analyzes the requirements for ESFM and identifies its basic compo-
nents. Section 3 presents the design of ESFM. Section 4 describes
three major procedures and operations in most meshfree methods
and their implementations in the current ESFM. Section 5 demon-
strates sample calculations on two-dimensional and three-dimen-
sional problems with different shape functions, sparse matrix
storage schemes, and parallelization. Conclusive summary are
given in Section 6.

2. Common procedures and components in weak-form
meshfree methods

ESFM was designed and developed based on the following three
general requirements. (1) It should be able to implement most
existing meshfree methods. (2) It should provide adequate modu-
lization and abstraction to allow independent developments of
algorithms in various parts of meshfree methods with minimal
efforts. For example, implementations of search algorithms should
not affect implementations in shape functions of meshfree meth-
ods. (3) Performance should also be considered in order to develop
high-performing meshfree analysis programs. Furthermore, we
only focus on the most fundamental aspects of meshfree methods
that are common to all surveyed methods. Therefore, several fea-
tures in surveyed literatures such as adaptivity, crack growth,
and multi-physics are excluded.

Based on these requirements, it is necessary to review existing
meshfree methods to: (1) identify common procedures amongst
various meshfree methods for unifying implementation efforts;
(2) discover fundamental components in meshfree methods; and
(3) isolate performance-critical numerical method components.

2.1. Common procedures for weak-form meshfree methods

By analyzing calculation procedures in some major meshfree
methods [60–63] and finite element methods, it is not difficult to

identify a unified calculation procedure for these methods. Fig. 1
shows the flowchart for the identified calculation procedure for
general meshfree analyses in the context of linear and static solid
mechanics, but this can be easily extended to solving problems for-
mulated from other fields as well. These general steps are:

1. Setting up model: the model for meshfree analyses mainly
consists of field nodes, boundary nodes, integration meshes
needed by weak formulation, and material constitutive mod-
els. Field nodes are used by shape functions (or approxima-
tion functions) for generating approximations to the
problem being solved, and often evaluations of derivatives
are required. Boundary nodes are used to impose boundary
conditions. Integration meshes can be manually assigned or
automated generated by Delaunay or Voronoi diagram [64]
in 2D, but robust-generation of 3D integration meshes
remains difficult. Material constitutive models are mainly
used to consider material behaviors during evaluation of glo-
bal stiffness matrices in later steps.

2. Assembling global stiffness matrix: the governing equation is
first approximated using a chosen meshfree approximation
method, and then integrated over the entire problem domain
using numerical integration methods such as Gauss integra-
tion [65] on integration points (which are different from field
nodes), or nodal integration [66] using field nodes.

3. Imposing natural boundary conditions: imposing natural
boundary conditions such as external loadings and body
forces is similar to the procedures in finite element methods.
Natural boundary conditions often contribute to the load
vector, and the global stiffness matrix is usually untouched.

4. Imposing essential boundary conditions: the imposition of
essential boundary conditions can be difficult in meshfree
methods. There are two types of shape-functions, one with
Kronecker delta property and one without. Those without
the Kronecker delta property require special treatments on
imposing essential boundary conditions. Often imposing
essential boundary conditions leads to modifications on both
global stiffness matrices and load vectors.

5. Solving discretized system equation: once the previous steps
are completed, a discretized system of linear equations
Ku = F is formed, and the system of equations can be then
solved using various methods.

6. Computing the final solution: for meshfree methods using
shape functions without the Kronecker delta property, the
computed u from the previous step needs to be substitute
into the shape function in order to recover the true solution.
This step is unnecessary for shape functions that possess the
Kronecker delta property.

7. Computing stresses and strains: after the final solution is
obtained, strains and stresses in each gauss point can then
be calculated by using shape functions and supplied consti-
tutive laws.

The above steps do not consider nonlinearity solution proce-
dures such as Newton–Raphson iterations and use linear-static
solid mechanics notations (K, u, and F). We focus mainly on lin-
ear-static solid mechanics procedure in this study.

2.2. Fundamental components for weak-form meshfree methods

To ease the implementations of meshfree analysis programs by
code re-using and to encourage new developments in meshfree
methods, it is necessary to categorize and modulize major compo-
nents in meshfree analyses, so that various algorithms in meshfree
analyses can be independently developed without being affected
or affecting other already developed modules. Therefore, not only

Fig. 1. The flowchart for the identified calculation procedure for general meshfree
analyses.

134 Y.-M. Hsieh, M.-S. Pan / Advances in Engineering Software 76 (2014) 133–147



Download English Version:

https://daneshyari.com/en/article/567985

Download Persian Version:

https://daneshyari.com/article/567985

Daneshyari.com

https://daneshyari.com/en/article/567985
https://daneshyari.com/article/567985
https://daneshyari.com

