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a b s t r a c t

Flows with suspended particles is a challenging task and important in many applications such as sedi-
mentation, rheology and fluidized suspensions. The coupling between the suspending liquid flow and
the particles’ motion is the central point in the complete understanding of the phenomena that occur
in these applications. Finite Element/Fictitious Domain is an important class of method used to solve this
problem. In this work we propose a simple object oriented implementation for simulations of flows with
suspended particles in the plane using the Fictitious Domain method together with Lagrange multipliers
to solve the Navier–Stokes and rigid body equations with a fully implicitly and fully coupled Finite Ele-
ment approach. To have an efficient implementation for Fictitious Domain/Finite Element method, we
introduce a new topological data structure that is concise in terms of storage and very suitable for search-
ing the elements of the mesh intersected by the particles.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Flows with suspended rigid particles occur in many different
applications, from sedimentation problems to the manufacturing
of ordered monolayer of micro and nano particles. The evolution
of the particles position is a central point in the complete under-
standing of the flow of these suspensions. One way of analyzing
the flow is to use a moving grid to discretize the Navier–Stokes
equations that wraps around all suspended particles. This method
requires remeshing and is not very efficient in the case of many
particles. An alternative is the Fictitious Domain approach that
was first proposed by Glowinski et al. [1], latter improved by Goa-
no et al. [2] and recently extended to handle particle flotation by
Lage et al. [3]. The Navier–Stokes equations are solved on a fixed
mesh and the particles move over it. This approach avoids the need
to remesh around the rigid particles, solving the entire problem on
a single fixed mesh. The Navier–Stokes equations are solved on the
entire domain, but inside each particle, the flow is constrained to
be a rigid body motion using Lagrange multipliers.

The implementation of particle flows methods based on Ficti-
tious Domain/Finite Element is quite complex, since the degrees
of freedom associated with each individual particle (linear and

angular velocities) cannot be written in terms of elemental degrees
of freedom. Moreover, the governing equations changes as the
overlap of particles over finite elements varies during the flow.
Therefore, an efficient implementation requires a topological data
structure to optimize the searching procedure of the mesh ele-
ments intersected by the suspended particles in the fluid flow sim-
ulation. This detection is fundamental to identify where the
Lagrange multipliers are active or not in the Fictitious Domain/Fi-
nite Element method [2].

Contributions: In this work, we present an object-oriented
implementation for the 2D Fictitious Domain/Finite Element meth-
od using non-structured meshes with triangular and quadrangular
elements. The use of object-oriented programming (OOP) has been
recognized as an useful coding technique for scientific computing
[4–7] and in particular for Finite Element Methods [8–16]. This
implementation uses important concepts of OOP, such as modular-
ization, inheritance and encapsulation. As a consequence we pro-
vide a simple interface to the data structures and algorithms
required to simulate particle flows.

To have an efficient implementation for the 2D Fictitious Do-
main/Finite Element method using Lagrange multipliers, we also
propose a new topological data-structure, called Compact Tri-Quad

Representation, that gives a suitable balance between time and
memory complexity for modeling a hybrid 2D mesh. Other data
structures have been proposed in the literature in order to reduce
the memory use on Finite Element Method implementations [17].
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The Compact Tri-Quad Representation’s main characteristic is the
conciseness in terms of storage without loosing its efficiency to an-
swer adjacency and incidence relations queries. To answer such
queries among the topological entities of the mesh (faces, edges
and vertices), this data structure uses integer tables (implemented
as containers) and integer formulas to implicitly represent some
adjacency and incidence relations.

Paper outline: The remainder of this work is organized as fol-
lows. Section 2 describes the Ficticious Domain formulation for
fluid flow simulations with suspended particles. Section 3 presents
the Compact Tri-Quad Representation data structure. Section 4 pro-
poses the object oriented framework for a simple implementation
for the 2D Fictitious Domain/Finite Element method. Section 5
shows the results. Finally, Section 6 concludes this work by making
some remarks and suggestions for future developments.

2. Fictitious Domain formulation of flows with particles

Notation: Consider a two-dimensional bounded domain X with
external boundary @X, which is filled with Newtonian incompress-
ible fluids and suspended solid particles. Whenever the context is
clear, we call fluid one or more immiscible, Newtonian and incom-
pressible fluid phases filling the simulation domain X.

We denote Xf ¼
Snf

fi¼1Xfi the region of X occupied by nf fluid
phases fi 2 f1 . . . nf g with densities qfi

and viscosities lfi
, and we

denote Xp ¼
Snp

pi¼1Xpi
the region of X covered by np rigid particles

pi 2 f1 . . . npg with densities qpi
and radius Rpi

. We also represent
the interface between fluid and particles by @Xp ¼

Snp

i¼1@Xpi
, where

@Xpi
represents the boundary of the particle pi and we denote the

interface between two fluid phases fi and fj by @Xfij
. Finally, we ob-

serve that X ¼ Xf
S

Xp. Fig. 1 sketches a typical simulation scenario
with a two dimensional domain filled by two fluid phases and one
suspended solid particle.

Formulation review: In this paper, we propose a programming
approach to simulate flows with suspended rigid body particles
using the formulation presented by Lage et al. [3]. Here, we briefly
review the differential formulation of the problem. Let us define
the velocity field ~up to be a rigid body velocity inside each particle
pi and zero in the fluid region Xf , i.e.:

~up ¼
~Upi
þxpi

� ð~x�~Xpi
Þ in Xpi

with pi 2 ð1 . . . nÞ
0 in Xf

(
ð1Þ

The integral momentum equation for ~up restricted to Xpi
can be

written as:Z
Xpi

qpi

D~up

Dt
dXpi

¼
Z

Xpi

qpi
~gdXpi

þ
Z
@Xpi

~npi
� rf d@Xpi

þ~b ð2Þ

where ~npi
is the outward normal to @Xpi

and~b represents the capil-
lary, repulsion or any other body force acting on the particle.

Assuming that the liquid is Newtonian, the stress tensor rf can
be extended over the entire domain X. Such extension can always
be done if we define~u and p to be extensions over X of the velocity
and pressure fields.

Using this extended stress tensor we can apply the divergence
theorem and rewrite Eq. (2) as:Z

Xpi

qpi

D~up

Dt
dXpi

¼
Z

Xpi

qpi
~gdXpi

þ
Z

Xpi

r � r dXpi
þ~b

Now, if we adopt the following notation:

~F ¼ �qf
D~u
Dt þ lM~u in Xpi

with pi 2 ð1 . . . nÞ
0 in Xf

(

together with an additional constraint to the extended velocity field
~u that imposes ~u ¼ ~Upi

þxpi
� ð~x�~Xpi

Þ in Xpi
and the fact the par-

ticle’s shape is circular, we can write the equation for the particle’s
velocity ~Upi

:Z
Xpi

ðqpi
� qf Þ

@~Upi

@t
dXpi

¼
Z

Xpi

qpi
~g �rpþ~F

n o
dXpi

þ~b

We can recover the angular velocity xpi
assuming the no-slip

boundary condition along the surface of particle
pi;~u ¼ ~Upi

þxpi
� ð~x�~Xpi

Þ in @Xpi
:Z

Xpi

xpi
dXpi

¼ 1
2

Z
Xpi

r� ð~u� ~Upi
Þ dXpi

Using the force~F, the extended velocity~u, pressure p and stress
tensor r fields, we can write the momentum equation:

q
D~u
Dt
¼ r � rþ q~g �~F in X

We now define a global Lagrange multiplier~l that is related to~F
through the following boundary value problem:

~F ¼ �a~lþ lM~l in X ð3Þ
~l ¼ 0 on @X ð4Þ

where a is a positive constant parameter.
The problem defined by Eqs. (3) and (4) is a well posed for~F and

it is more efficient to use its unique solution to impose the rigid-
body constraint on the extended velocity field ~u (see Goano et al.
[2]). The complete formulation of the flow with suspended parti-
cles using the Fictitious Domain method is:

q D~u
Dt ¼ r � rþ q~g þ a~l� lM~l in X

r �~u ¼ 0 in XR
Xpi
ðqpi
� qf Þ

@~Upi
@t dXpi

¼
R

Xpi
qpi
~g �rp� a~lþ lM~l

n o
dXpi

þ~b in XpiR
Xpi

xpi
dXpi

¼ 1
2

R
Xpi
r� ð~u� ~Upi

Þ dXpi
in Xpi

ð5Þ

In addition to the system of Eq. (5), the Lagrange multiplier in
the fluid domain, the rigid body constraint inside the particle do-
main and the evolution of the particles’ position must also be in
the complete formulation:

~l ¼ 0 in Xf

~u ¼ ~Upi
þxpi

� ð~x�~Xpi
Þ in Xpi

@~Xpi
@t ¼ ~Upi

for pi 2 ð1 . . . npÞ

3. CTQR Topological data structure

To efficiently handle with the topological relationship between
particles and mesh elements, which is the basic query needed to
implement fully coupled particle flow simulations based on

Fig. 1. Sketch of a simulation scenario: two immiscible fluid phases Xf1 and Xf2 filling
a two-dimensional box X and one suspended particle covering the region Xp1

.
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