
Integrated aerodynamic design and analysis of turbine blades

Chengen Wang ⇑
Northeastern University, Shenyang 110819, China

a r t i c l e i n f o

Article history:
Received 16 August 2013
Received in revised form 19 September 2013
Accepted 27 October 2013
Available online 21 November 2013

Keywords:
Aerodynamic blade design
Airfoil modeling
Design integration
Design collaboration
Engineering process management
Flow analysis

a b s t r a c t

This paper presents an integrated approach for aerodynamic blade design in an MDO (multidisciplinary
design optimization) environment. First, requisite software packages and data sources for flow computa-
tions and airfoil modeling are integrated into a single cybernetic environment, which significantly
enhances their interoperability. Subsequently, the aerodynamic blade design is implemented in a
quasi-3D way, supported by sophisticated means of project management, task decomposition and allot-
ment, process definition and coordination. Major tasks of aerodynamic blade design include 1D meanline
analysis, streamsurface computations, generation of 2D sections, approximation of 3D airfoils, and 3D
flow analysis. After compendiously depicting all the major design/analysis tasks, this paper emphatically
addresses techniques for blade geometric modeling and flow analysis in more detail, with exemplar
application illustrations.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Turbine blades are core components of an aeroengine, a typical
sub-category of gas turbines, which transform aerodynamic and
thermal energy carried by gas fluids into mechanical driving en-
ergy. Consequently, operations of turbine blades largely dominate
the global engine performance, such as thrust, aerodynamic and
thermal efficiency, fuel-efficiency, and reliability. Today’s increas-
ingly augmented requirements for high performance aeroengines
subject turbine blades to fiercely intensive aerodynamic, thermal
and mechanical loadings. These extreme physical loadings make
turbine blades work in very harsh conditions that approach the
limits of its material properties such as melting points, stress and
damage-resistance thresholds.

Accordingly, turbine blade design has been regarded as one of
the most difficult engineering problems, which has drawn inten-
sive attention from both industrial and academic circles. Generally,
design of turbine blades is a complex multidisciplinary process
involving the integration of several disciplines such as aerodynam-
ics, structures, dynamics, and heat transfer [1].

Disciplinarily, aerodynamics engineers have to control the very
complex flow phenomena occurring in highly loaded stages, on the
whole operating range of the engine [2]. And, thermodynamics
engineers have to accurately comprehend the heat transfer pro-
cesses between gas flows, coolants and solid structures, and keep
temperatures within the blade structure well below the allowable

limits. While, mechanics engineers are expected to precisely pre-
dict and simulate structure deformations and dynamic responses
under the aerodynamic, thermal and mechanical loadings.

Conventionally, the multiple disciplinary computations were
carried out separately by different groups of engineers, aided by
a number of stand-alone problem-solvers. Conceivably, the iso-
lated computing processes result in remarkable engineering ineffi-
ciency and ensnarement in local optimums. Besides, the isolated
legacy problem-solvers leave out of account strong couplings
among disciplinary computations for turbine blade engineering.

To effectively tackle the drawbacks of traditional sequential de-
sign approaches, companies are growingly employing integrated,
collaborative, and multidisciplinary design technologies. Actually,
since the advent of information technologies, researchers have
been continuously looking for cost-effective integration ap-
proaches to build bridges among isolated ‘‘automation islands’’
[3,4].

In regard to aeroengine design, a variety of integrated engineer-
ing infrastructures have been implemented to improve interopera-
bility among heterogeneous software packages and data sources.
For instance, Talya et al. (2000) presented an integrated multidis-
ciplinary design optimization procedure for design of both inter-
nally and externally cooled gas turbine blades [5]. Houstis et al.
developed a multidisciplinary problem solving environment to
support collaborative design of gas turbines, where the legacy FOR-
TRAN and C codes were wrapped up and delegated by agents [6].

As a common practice, turbine blade design commences with
aerodynamic shape design, of which the ultimate goal is to find
the airfoil surfaces that optimize the blade’s aerodynamic

0965-9978/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.advengsoft.2013.10.005

⇑ Tel.: +86 24 83683619.
E-mail address: wangc@mail.neu.edu.cn

Advances in Engineering Software 68 (2014) 9–18

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://crossmark.crossref.org/dialog/?doi=10.1016/j.advengsoft.2013.10.005&domain=pdf
http://dx.doi.org/10.1016/j.advengsoft.2013.10.005
mailto:wangc@mail.neu.edu.cn
http://dx.doi.org/10.1016/j.advengsoft.2013.10.005
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


performance. Blade airfoil design essentially relies on numerical
computations that describe and predicate various fluid flows with-
in turbine stages, in compliance with governing equations of mass,
momentum and energy conservations. The fluid governing equa-
tions are generally called Navier–Stokes equations in the literature,
and the corresponding software packages are called 3D Navier–
Stokes solvers.

Thanks to rapid enhancements of computational capabilities,
software codes of finite difference methods (FDM), finite element
methods (FEM) and finite volume methods (FVM) are able to solve
the 3D governing equations in reasonable time periods. However,
finding numerical solutions to the governing equations in 3D blade
passages is so time-consuming that for a long time the equations
have been solved in 2D or quasi 3D spaces by industries.

And, in engineering practice, many companies have not shifted
to the full 3D computational paradigm; 2D and quasi-3D aerody-
namics solvers still play a dominant role in blade engineering. Re-
cently, Koini et al. (2009) developed a software tool for
interactively constructing parametric 3D blade models on basis
of 2D profile sections [7]. Qiu et al. (2010) presented an integrated
blade design system that incorporates 1D meanline analysis, quasi-
3D throughflow and blade-to-blade flow calculations, and 3D CFD
[8].

In accompaniment to worldwide zeal for multidisciplinary de-
sign optimization (MDO), we have been developing an MDO envi-
ronment [9] for a decade, which concordantly incorporate
information and application integration techniques [10–13], opti-
mization algorithms [14], response surface models [15], etc. The
MDO environment is a platform of high maintainability, scalability
and flexibility, which may accommodate existing legacy problem-
solvers and emerging problem-solvers. With support from a num-
ber of manufacturing companies, the ad hoc MDO environment has
been employed in several engineering analysis and design scenar-
ios like turbine blade design, aircraft flight-load design, aeroengine
heat transfer analysis, ship power system design, and develop-
ments of car molds.

The goal of this paper is to present how the MDO environment
is implemented to aerodynamic turbine blade design, by perform-
ing ‘‘what-if’’ computations of flow velocity and pressure distribu-
tions, and blade geometries. Specifically, this work addresses an
initial pilot phase of implementing MDO techniques to aeroengine
design, which aimed at validating feasibility and merits of applying
multidisciplinary design integration and optimization techniques.

To reduce implementation complexity and to rapidly gain tech-
nical benefits, the practitioner engineers decided that emphasis of
the pilot phase was put on design integration and collaboration in
the context of aerodynamic blade engineering. This meant that the
pursuit of design optimization was not explicitly addresses in this
stage, and perspectives of heat transfer analysis and structural
analysis were not accounted.

The rest of this paper is structured as follows. Section 2 de-
scribes how software codes and data sources used for quasi-3D
aerodynamic blade design are integrated. Section 3 first explains
how aerodynamic design is defined and managed in terms of pro-
jects, tasks and workflows. Then, Section 3 depicts the major tasks
of blade airfoil engineering. Section 4 depicts in more detail the
geometric modeling techniques that are used to approximate blade
airfoils. Section 5 presents how flow characteristics analysis, vari-
ous losses and efficiencies are computed in the MDO environ-
ments. Section 6 finally concludes this paper.

2. Aerodynamic blade design integration

In practice, a turbofan engine may run with one, two or up to
three spools, which respectively have one, two or three turbines

for extracting energy from the exhaust fluid. In turn, a turbine
comprises multiple stages, each of which has a rotor that extracts
the fluid energy, and a stator that adjusts the flow velocity and
direction. Compositionally, a rotor is a cascade of blades attached
to a disc at the roots, in which the throughflows of exhausts mainly
move forwards in parallel to the axis of rotation. And, a stator is a
cascade of blades or vanes attached to the engine casing at the tips,
in which the throughflow velocity and direction are adjusted. This
work addresses integrated aerodynamic blade design through all
turbine stages in the MDO environment.

As unable being computed by a monolithic software package,
the quasi-3D blade aerodynamic design is collectively computed
by over a dozen of disciplinary analysis and design codes that
respectively predict 1D, 2D and 3D flow characteristics, and depict
the corresponding blade geometries in 2D and 3D spaces. It is
implicitly assumed that the aerodynamic computations are con-
ducted without accounting for heat transfer (adiabatic conditions),
and structural responses induced by the aerodynamic loads.

2.1. Integration of blade aerodynamic design codes

Noticeably, all the in-house developed 1D and 2D flow comput-
ing codes and blade profile modeling codes were written in proce-
dural FORTRAN and C languages, which use plain text files for data
retrieval and transfer. And, engineers had to manually prepare the
input files and visually parse the output files of computation pro-
cesses because the legacy software applications were default of
Graphical User Interfaces (GUIs). Generally, these stand-alone
problem-solvers did not support out-process communications
and multiple concurrent user access.

Consequentially, integration techniques are implemented as an
essential part of the MDO environment, which accommodate all
the codes and data sources on a single cybernetic platform. This
enables effective coordination and tight collaboration in design of
turbine blade airfoils.

Application integration allows executions of disciplinary soft-
ware packages to be effectively controlled and coordinated. In
the MDO environment, aerodynamic engineers do not have to
memorize a large number of command lines for launching the leg-
acy problem-solvers. And, they are provided with means to inter-
act with the computation processes, by using surrogate objects
[10].

Software packages integrated into the MDO environment are no
longer independent systems but parts of a whole. Therefore, the
software packages need to be known of their existence and let their
executions be controlled and coordinated. The MDO environment
uses dynamic registration and configuration approaches to keep
track of the integrated applications. As shown in Fig. 1, an applica-
tion’s registration information generally includes its name, disci-
pline, command lines, versions, running environments,
executable file with a suffix of exe or bat, numbers and names of
the input/output files, its host machine and absolute path.

2.2. Interoperation of heterogeneous data sources

In conjunction with application integration, information inte-
gration carries out interoperations among heterogeneous data
sources, by building mapping relations among data objects, seman-
tically parsing unstructured input/output files, and transforming
data representation schemas. For instances, data mapping methods
are implemented to discern disciplinary parameters contained in a
solver’s input/output files, and to maintain dynamic linkages be-
tween the non-structured parameter files handled by a solver
and the structured data objects (database records or XML files)
handle by the integration platform [11].

10 C. Wang / Advances in Engineering Software 68 (2014) 9–18



Download English Version:

https://daneshyari.com/en/article/568012

Download Persian Version:

https://daneshyari.com/article/568012

Daneshyari.com

https://daneshyari.com/en/article/568012
https://daneshyari.com/article/568012
https://daneshyari.com

