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a b s t r a c t

One of the difficulties encountered in thermal modelling of welding processes is the determination of the
input parameters and in particular the thermal boundary conditions. This paper describes a novel method
of determining these values using an artificial neural network to solve the Inverse Heat Conduction Prob-
lem using the thermal history as input data. The method has been successfully applied to models that
represent the heat transfer to the backing bar with a contact gap conductance heat transfer. Both constant
and temperature dependent values of the contact gap conductance heat transfer coefficient have been
used. The ANN was able to find the contact gap conductance heat transfer successfully in both cases, how-
ever the error was significantly lower for the constant value. The key to successful implementation is the
ANN topology (e.g. generalized feedforward), and the development of effective methods of abstracting
the thermal data.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Determining the input parameters and in particular the thermal
boundary conditions in a numerical model of a welding process is
often difficult. The boundary condition is not only difficult to mea-
sure experimentally, but is dependent on the type and temperature
of the backing bar as well as the clamping used. If we consider
thermal models of Friction Stir Welding (FSW) as an example, three
different approaches have been used to describe the heat loss to
the backing bar. The first method assumes that there is no heat loss
at the bottom of the workpiece [1], giving an adiabatic boundary
condition. This gives a significant over-estimation of the tempera-
ture. Alternatively, the heat loss can be represented by a convective
heat transfer coefficient by excluding the backing bar in the model.
Khandkar et al. [2] showed that this method was able to predict the
peak temperature, however getting a good match with the cooling
region was difficult. A more comprehensive method involves
including the backing bar in the model and using a contact gap
conductance heat transfer coefficient k (W m�2 K�1), to represent
the imperfect contact with the workpiece [1–3]. In this case, the
contact gap conductance heat transfer k is implemented in the
model with the flowing equation:

Q ¼ kðTW � TBÞ ð1Þ

where Q is the heat flux from workpiece to the backing bar, TW is the
temperature at the workpiece and TB is the temperature at the back-
ing bar. This method has been claimed [2] to give a better prediction
of the temperature profile than the convective heat transfer coeffi-
cient method. An even better prediction can be obtained with a var-
iable contact gap conductance heat transfer coefficient. Variable
values have been used by Simar et al. [1] who used a value which
varied with the normal pressure. Colegrove et al. [3] applied a high-
er constant contact gap conductance heat transfer coefficient to the
welded area under the tool and Shi et al. [4] used a temperature
dependent contact gap conductance heat transfer coefficient. Re-
cent work by Wang et al. [5] showed that a temperature dependent
value based on an exponential function provided a good fit with
experimental data for FSW. These methods were used because in
FSW there is better contact under the tool due to the high temper-
atures and pressures – hence the reason for increasing the contact
gap conductance with temperature. Regardless of the method used,
there is the issue of obtaining representative values of the boundary
condition, which is usually done by trial and error. The problem can
be classified as an Inverse Heat Conduction Problem (IHCP) [6],
which involves calculating the boundary conditions from measured
outputs such as the temperature history.

One way of finding the boundary conditions in a more efficient
manner is with an artificial neural network (ANN). An ANN is a
numerical modelling technique that simulates the structure and
functions of biological neural network [7]. It consists of an inter-
connected group of artificial neurons and processes information
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using a connectionist approach to computation. In most cases it is
an adaptive system that changes its structure based on external
information that flows through the network during the learning
stage, which is used to investigate complex relationships between
inputs and outputs or to find patterns in data.

ANN models can be linked with process models to find un-
known boundary coefficients. In an analysis of the heat transfer
that occurs between solid particles and a fluid, Sablani [8] and
Sreekanth et al. [6] have demonstrated how an ANN can be used
to solve an IHCP. Three steps were used to find the solution [8]:

� Use an analytic or numerical thermal model to generate a series
of temperature–time histories from a series of training input
parameters.
� Train the ANN using the outputs from the thermal model as

inputs. Likewise the inputs to the thermal model are used as
the outputs to the ANN.
� Once the ANN has been trained, a series of test input thermal

profiles can be used to determine whether the ANN is able to
accurately predict the outputs, i.e. the boundary conditions.

This method has been highly effective in determining the fluid to
particle heat transfer coefficient. One important step in the analysis is
to find a way of inputting the thermal history. The authors did this by
identifying the slope and intercept of the thermal profile. Another
important outcome of this work is the importance of the ANN topol-
ogy to the success of the ANN model. Three important topologies are:

� The multilayer perceptrons network (MLP) [9]. This is a layered
feed-forward network typically trained with static back-propa-
gation. It can be used for most problems, but it requires a large
amount of data for training.
� The generalized feed-forward network [9]. This is a variant of

the MLP network which allows information to jump over one
or more layers. It can solve problems more efficiently than an
MLP network with less training data, however it needs more
time for training.
� The modular feed-forward network [10]. This has the most

sophisticated structure, and the information is processed
through several parallel MLPs, which are then recombined. This
network requires the least training data.

The back propagation algorithm is the most common way of adjust-
ing the weights in the neural network. There are however two gradient
decent methods which are used to adjust the local weights. These are
the momentum method and the Levenberg–Marquardt (LM) algo-
rithm, which has the advantage of being higher order.

Some authors have applied similar concepts to welding pro-
cesses. Weiss et al. [11] developed a similar hybrid modelling ap-
proach and applied it to hybrid laser welding. The model
automates the determination of the fitting parameters for the ther-
mal model using an ANN. However, rather than using thermal pro-
files as inputs, the author used the dimensions of the fusion zone.
Alternatively, genetic algorithms can be used to find the adjustable
parameters in models of FSW [12] and arc welding [13].

The aim of this work is to find the input parameters and in par-
ticular the heat loss to the backing bar for a simple welding process
using a hybrid finite element (FE)/ANN model.

2. Method

2.1. Thermal model

A simple FE thermal model is developed in COMSOL multiphys-
ics, and the geometry is shown in Fig. 1. This model only calculated

the heat flow during the welding process to simply the case for
analysis. The model is steady state and only half the geometry is
modelled because of the symmetry along the welding axis. Gauss-
ian power distributions have been used by many researchers [14–
18] to represent the heat input from a welding arc. It can also be
used to represent the power input from a laser process [19]. The
Gaussian heat flux q applied to a semi-circle, as shown in Fig. 1,
is given by:
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exp �r2
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where Qweld is the total power input to the weld; rh is radius of a
semi-circle. In this study rh is set to 15 mm; r is distance from the
centre of the spot; rs is a constant which describes the distribution
of the power. All the models in this study use a value of 5 mm.

The welding speed is set to 400 mm/min and is fixed for all the
trials in this study. Note the welding speed is not included in the
ANN model because it is a known parameter in any welding exper-
iment. The properties of the workpiece and backing bar are shown
in Table 1. Please note that in this simple model constant values
are used and latent heat effects are ignored. A convective heat
transfer coefficient of 10 W m�2 K�1 by Shi et al. [4] was used on
the top surface of the workpiece and a value of 1000 W m�2K�1

from Colegrove et al. [23] was used on the underside of the backing
bar. The adjustable parameters in the model are the total power in-
put, Qweld and the contact gap conductance heat transfer coeffi-
cient, k. The contact gap conductance heat transfer coefficient
describes the imperfect heat transfer between the workpiece and
the backing bar due to asperity contact. Two different models are
used in this work. One model uses a constant value of k and the
other uses a temperature dependent value [4]. Although Shi et al.
[4] does not provide a function for k, the values approximate an
exponential of the form:

k ¼ a � expðb � TÞ ð3Þ

where T is the temperature in unit of K, a and b are constants whose
values are approximately 22.16 W m�2 K�1 and 0.0107 K�1 respec-
tively for the data in this paper.

2.2. ANN model

The ANN methodology is the same as for the Inverse Heat Con-
duction Problem described in Sablani [8] previously. Two stages of
applying an ANN model are described in Fig. 2(a). The input param-
eters to the ANN are the thermal profiles from the thermal model
which are obtained at distances of 10, 15 and 20 mm from the weld
centreline, mid-thickness. The outputs are the weld power input
and the contact gap conductance heat transfer coefficient.

Fig. 1. Geometry used for the FE model.
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