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a b s t r a c t

During the last decades, multigrid methods have been extensively used in order to solve large scale linear
systems derived from the discretization of partial differential equations using the finite difference
method. The effectiveness of the multigrid method can be also exploited by using the finite element
method. Finite Element Approximate Inverses in conjunction with Richardon’s iterative method could
be used as smoothers in the multigrid method. Thus, a new class of smoothers based on approximate
inverses can be derived. Effectiveness of explicit approximate inverses relies in the fact that they are close
approximants to the inverse of the coefficient matrix and are fast to compute in parallel. Furthermore, the
proposed class of finite element approximate inverses in conjunction with the explicit preconditioned
Richardson method yield improved results against the classic smoothers such as Jacobi method. More-
over, a dynamic relaxation scheme is proposed based on the Dynamic Over/Under Relaxation (DOUR)
algorithm. Furthermore, results for multigrid preconditioned Krylov subspace methods, such as
GMRES(res), IDR(s) and BiCGSTAB based on approximate inverse smoothing and a dynamic relaxation
technique are presented for the steady-state convection-diffusion equation.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Let us consider a class of problems defined by the following
Partial Differential Equation (P.D.E.):

�eðDuÞ þ a
@u
@x
¼ f ðx; yÞ; ðx; yÞ 2 X; ð1Þ

where e is the diffusion coefficient, a is the convection coefficient
and f is the force function, cf. [15,18], subject to generalized bound-
ary conditions:

gðc1ruÞ þ c2u ¼ c3; ðx; yÞ 2 @X; ð1:aÞ

where X is a closed bounded domain, @X denotes the boundary of
X and~g is the outward unit length normal. The c1, c2 and c3 are suf-
ficiently smooth functions in two space variables. Assuming that
the associated bilinear form B(u,v) is continuous and coercive on
Hp(X) then there exists a solution uh associated with the solution
u of the original problem (1):

Bðuh; vhÞ ¼ hf ;vhi; 8vh 2 Sh � HpðXÞ; ð2Þ

where Sh is a space, p is the order of the Sobolev space and the finite
element approximation uh to u can be derived. The region X is then

divided into a non-overlapping triangular finite elements of mesh
size h with k nodes for each element. Let us consider n nodes in
X [ @X not containing points on which the boundary conditions
are imposed. The finite element solution over the total elements
of the region in a column-wise ordering, is

uhðx; yÞ ¼
Xn

i¼1

uiUiðx; yÞ; ð3Þ

where Ui(x, y) are trial functions. It is well known, that the solution
to the bilinear form, viz.,

Xn

i¼1

uiBðUi;UjÞ ¼ hf ;Uji; j ¼ 1; . . . ;n ð4Þ

results in the following sparse linear system, i.e.

Au ¼ f ð5Þ

where the coefficient matrix A is a nonsingular large, sparse,
unsymmetric, positive definite matrix of certain structure with
semi-bandwidth m, while u is the FE solution at the nodal points
and f is a vector, with components resulting from the combination
of source terms and imposed boundary conditions, cf. [10,16,17].
The ordering of the grid points is lexicographical. In the case of
triangular elements the width of the bands at semi-bandwidth m
is two, while in the case of rectangular elements the width of the
bands at semi-bandwidth m is three.
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Explicit preconditioned methods have been extensively used for
solving sparse linear systems on multiprocessor systems, and the
preconditioned form of the sparse linear system (5) is

MAu ¼Mf ð6Þ

where M is a suitable preconditioner. The preconditioner M has to
satisfy the following conditions: (i) MA should have a clustered
spectrum, (ii) M can be efficiently computed in parallel, (iii)
‘‘M � vector’’ should be fast to compute in parallel. The effective-
ness of explicit approximate inverse preconditioning relies on the
use of suitable preconditioners that are close approximants to the
inverse of the coefficient matrix and are fast to compute in parallel,
cf. [9]. In this article we present a parameterized ‘‘smoother’’ based
on the explicit approximate inverse matrix and the explicit precon-
ditioned Richardson iterative method.

During the last decade, multigrid methods, have been exten-
sively used, cf. [1,3,5,12,13,18], for solving large sparse linear sys-
tems, and gained substantial interest among the scientific
community for both their efficiency and convergence behavior.

Multigrid methods are based on the observation that the high
frequency components of the error are damped effectively by a sta-
tionary iterative method (such as Jacobi or Gauss–Seidel), however
the low-frequency components are not damped effectively. In
order for low frequency components of the error to be handled, a
series of coarser grids with higher mesh size, using triangular
and rectangular elements, are used as shown in Fig. 1. In this series
of coarser grids the low-frequency modes of the error are more
oscillatory and can be damped efficiently by a stationary iterative
method, cf. [1,3,13,14,18]. Multigrid methods are composed by
four discrete elements: stationary iterative method, restriction
operator, prolongation operator and cycle strategy. The stationary
iterative methods are first order iterative methods such as Richard-
son, Jacobi and Gauss–Seidel method. Restriction and prolongation
are transfer operators from finer to coarser grids and from coarser
to finer grids respectively. The cycle strategy refers to the sequence
in which the grids are visited until a solution with the prescribed
tolerance is obtained.

2. Multigrid methodology

Let us consider the linear systems derived from the discretiza-
tion of a PDE at different levels, required by the multigrid method,
on a unit square domain with different mesh size h:

Ahuh ¼ fh; ð7Þ

The linear system (7) can be solved iteratively with a multigrid
method. A multigrid method can be formulated by the recursive call
of the two-grid method, with m1 pre-smoothing steps and m2 post-
smoothing steps as well as a correction on the coarser grid, cf.
[3,13,18].

An important component in multigrid methodology is a station-
ary iterative solver, namely ‘‘smoother’’, expressed by the follow-
ing relation:

uðkþ1Þ
‘ ¼ uk

‘ þM‘r‘; r‘ ¼ f‘ � A‘u
ðkÞ
‘ ; ð8Þ

where ‘ is the level of discretization and f‘, A‘ are the right hand side
and the coefficient matrix and uðkÞ‘ is the solution vector at the kth
iterative step. Further discussions and proofs about classical smoo-
thers can be found in [3,13,14,18]

Approximate inverses in conjunction with the general iterative
method (8) can be used as smoothers for multigrid schemes, by
considering M‘ ¼ ðM‘Þdl

r , where ðM‘Þdl
r is a class of finite element

approximate inverses of the coefficient matrix of the linear system
corresponding to each level of the multigrid method. The finite ele-
ment approximate inverse matrix ðM‘Þdl

r , where dl is the ‘‘retention’’
parameter, with dl = qm, q = 1, 2, . . . ,m � 1, can be computed by
Optimized Banded Generalized Approximate Inverse Finite Ele-
ment Matrix (OBGAIFEM) algorithm, cf. [17], based on Finite Ele-
ment Approximate LrUr Factorization (FEALUFA) algorithm, where
r is the ‘‘fill-in’’ parameter, i.e. the number of outermost off-diago-
nal entries retained at semi-bandwidth m in the upper and lower
decomposition factors, cf. [16]. The ‘‘retention’’ parameter dl de-
notes the number of elements retained next to the main diagonal
elements of the approximate inverse. The new class of smoothing
schemes can be described as follows:

uðkþ1Þ
‘ ¼ uðkÞ‘ þxðM‘Þdl

r f‘ � A‘u
ðkÞ
‘

� �
; ð9Þ

where x is the damping parameter with 0 < x 6 1. In order for a
stationary method to function as smoother, the smoothing property
must be satisfied, cf. [13,14] and has been proven in [6].

The choice of the relaxation parameter for the approximate in-
verse smoothing scheme is non-trivial and the DOUR scheme, cf.
[12], is used to compute the optimal value of x. The proposed
scheme in conjunction with the DOUR method can be expressed
as follows:

uðkþ1Þ
‘ ¼ uðkÞ‘ þxeðM‘Þdl

r f‘ � A‘u
ðkÞ
‘

� �
; xe ¼ xð1þ jÞ; ð10Þ

Fig. 1. Square domain discretized with finite element method with different mesh size h using triangular (left) and rectangular (right) elements.
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