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a b s t r a c t

This paper presents an efficient and stable as-rigid-as-possible mesh deformation algorithm for planar
shape deformation and hexahedral mesh generation. The deformation algorithm aims to preserve two
local geometric properties: scale-invariant intrinsic variables and elastic deformation energy, which
are together represented in a quadric energy function. To preserve these properties, the position of each
vertex is further adjusted by iteratively minimizing this quadric energy function to meet the position
constraint of the controlling points. Experimental results show that the deformation algorithm is effi-
cient, and can obtain physically plausible results, which have the same topology structure with the ori-
ginal mesh. Such a mesh deformation method is useful to project the source surface mesh onto the target
surfaces in hexahedral mesh generation based on sweep method, and application results show that the
proposed method is feasible to mesh projection not only between similar surface contours but also dis-
similar surface contours.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Mesh has gradually become the mainstream representation of
geometric models, and deformation technique for planar mesh
model has received a lot of attentions in recent years. Planar mesh
deformation is widely used in many application fields, such as
computer aided design, mesh generation, shape modeling, com-
puter animation and other applications. A good mesh deformation
algorithm aims to produce naturally deforming results, which are
homeomorphic to the original planar mesh, and the final positions
of the controlling points should be precise. Furthermore, in the
field of solid mesh generation, hexahedral mesh generation has al-
ways been concerned, since hexahedral mesh offers several
numerical advantages over tetrahedral mesh due to its tensor
product nature. Surveys show that more than 60% volumes are
meshed by sweep method, which shows that sweep method has
been the workhorse algorithm in hexahedral mesh applications
[1]. Given a swept volume, it is necessary to project the source sur-
face mesh onto the target surfaces, and therefore the most chal-
lenging issue to be dealt with by any sweep method is the
interpolation between the source mesh contours and the target
surface contours.

In this paper, we focus on planar mesh deformation, a critical
step towards generation of hexahedral mesh based on sweep
method, and propose a new as-rigid-as-possible planar mesh
deformation algorithm. The deformation algorithm aims to pre-
serve two local properties: scale-invariant intrinsic variables and
elastic deformation energy, which are together represented in a
quadric energy function. We iteratively minimize the linear quad-
ric energy function to adjust the position of each vertex to obtain a
physically plausible deforming result, which can meet the position
constraints of the controlling points. We also introduce a scheme
to project the source surface mesh onto the target surfaces in
sweep based hexahedral mesh generation via the proposed defor-
mation algorithm, and numerical experiments show that a home-
omorphous deformed mesh can be obtained and used to achieve
the projection between surfaces with dissimilar contours.

2. Related work

The problem of shape deformation for planar mesh has at-
tracted huge interest in the past, which started with the work of
Sederberg and Parry [2], who produced deforming results by the
most well-known method, called free form deformation (FFD).
FFD is a space-based technique [3,4], which embeds a shape into
a lattice and then makes the shape to deform by moving the con-
trolling points of the lattice. While FFD method is applicable to
any type of shapes, easy to implement and very efficient in compu-
tation, it cannot keep the geometric features of the input shapes
accurately. For shapes with significantly skeleton structure,
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skeleton-based deformation [5] provides an intuitive tool to con-
trol the deformation of these shapes, and it is convenient for users
to manipulate the skeletons. The most important issue to skeleton-
based deformation method is to determine the weight of each ver-
tex in the affected mesh area, and the deformed results are quite
sensitive to weight selection, which is a painful process for users.

To obtain a physically deforming result, Gibson and Mirtich [6]
proposed a physically based shape deformation algorithm by
mass–spring system, which is very easy to implement. However,
it is too slow to converge and not stable in some cases, and various
parameters need to be carefully adjusted. Celniker and Gossard [7]
provide a more accurate simulation tool to achieve physically plau-
sible results by using finite element theory, but it is complex and
very expensive in computation, making it unsuitable for interactive
deformation applications. Alexa et al. [8] presented as-rigid-as-
possible shape deformation method first, and more methods
[9,10] were developed by using a similar idea. The key contribution
of the idea is a local to global algorithm, which combines a local ri-
gid transformation on each triangle, with a global stitch operation
to all triangles. But these methods are unstable in some cases.

Recently, many feature preserving deformation methods are
proposed for planar mesh models. They try to minimize an energy
function representing local properties of the model, and the most
important thing to these methods is the selection of local proper-
ties. The more related feature preserving approaches proposed in
this paper are those works introduced by Igarashi et al. [10], Weng
et al. [11], and Guo et al. [12]. Igarshi et al. proposed a two-step
algorithm to deform a planar shape by manipulating a few control-
ling points. The first step finds a local rigid transformation for each
triangle and the second step adjusts its scale globally. The key con-
tribution is to use quadratic error metrics so that each minimiza-
tion problem can be solved quickly and stably. Duo to its linear
nature, the two-step algorithm may cause implausible results in
some cases. Weng et al. presented a 2D shape deformation algo-
rithm using non-linear least squares method. Their method aims
to preserve the Laplacian coordinates of the boundary curve and
the local area of the shape interior, and a physically plausible de-
formed result can be obtained by minimize a nonlinear energy
function using an iterative Gauss–Newton method. This non-linear
2D shape deformation does not take into account the difference of
mesh structure, and Guo et al. provide a detailed analysis of the
shape deformation method and prove that triangle mesh gains
more advantages in deforming. Based on the triangle mesh, they
proposed an improved edge length preserving shape deformation
algorithm, which is enough to preserve the local, global and
boundary properties of the shape. For some deformations with
huge shape changes, the aforementioned methods may produce
implausible results with face flips. Differential domain techniques
[13–15] cast deformation as an energy minimization problem, and
it preserves surface details and produces visually pleasing defor-
mation results by distributing errors globally through least-
squares minimization. Sorkine and Alexa [16] proposed an ARAP
surface deformation method by using an iterative minimizing
scheme, which can make small parts of the model change as rigidly
as possible.

Sweep based method is the most common used method in
hexahedral mesh generation, and the main issue to be dealt with
by any sweep algorithm is the projection of the source surface
mesh onto the target surfaces. Goodrich [17] proposed an orthog-
onal projection method to map nodes onto the target surfaces, the
projection process is named as root finding, and the root finding
problem is time-consuming and very complex. Knupp [18] pre-
sented a node placement way based on the linear transformation
between bounding node loops and smoothing method. Roca and
Sarrate [19,20] presented a method such that the projection of
the source mesh onto the target surfaces is determined by means

of an improved least-square approximation of an affine mapping.
The affine mapping is a linear transformation that preserves the
‘‘straightness’’ of shape, the relative position of each node keeps
unchanged. Hence, the affine mapping method is not suitable for
the projection between surfaces with dissimilar contours.

3. Planar mesh deformation

Mesh has been widely used in shape representation, and shapes
discussed in our algorithm are composed of triangle meshes and
quadrilateral meshes. Our algorithm can be viewed as a feature
preserving deformation method, which aims to preserve the
scale-invariant intrinsic variables and elastic deformation energy
of planar mesh. The scale-invariant intrinsic variables represent
the local intrinsic geometry characteristic of planar mesh and they
are invariant to geometric transformation such as translation, rota-
tion and scaling. While preserving scale invariant intrinsic vari-
ables often produces good deformation results for slight
deformations, it is not enough to produce physically plausible
deformation results for large deformations with too much control-
ling points. In these situations, the deformed mesh with local self-
intersection is not homeomorphic to the original planar mesh.
Therefore, we introduce the elastic deformation energy to preserve
the area of each mesh and to ensure the validity of deformed mesh.
Instead of minimizing a non-quadratic energy function, the pro-
posed algorithm deals only with quadratic energy function that
consists of three parts: Scale-invariant intrinsic variables preserv-
ing, elastic deformation energy and position constraints of all con-
trolling points, and a linear solution can be used iteratively to
obtain a homeomorphous deformed mesh.

We consider a two-dimensional mesh M = (V, E) is an abstract
simplicial complex representing the connectivity of the mesh,
where V = {v0,v1, . . .,vn�1}is the set of vertices, n is the number of
vertices; E is the simplicial complex that contains vertices
v = {i} 2 E, edges e = {i, j} 2 E and faces f = {i, j,k} 2 E. The adjacent
vertices of vertex vi are denoted by N(vi) = {jj(i, j) 2 E}, the number
of adjacent vertices is called the degree of vertex vi, and is denoted
as |N(vi)| .

3.1. Scale-invariant intrinsic variables

The scale-invariant intrinsic variables are defined for adjacent
edges of vertices at its first order neighborhood, and it is composed
of the length ratio and orientation angle of adjacent edges [21]. For
a vertex v0 in a planar mesh M and the polygon constructed by its
first order neighborhood (see Fig. 1), the adjacent edge of v0vi is
v0vi+1 in counterclockwise; ai is the orientation angle between
v0vi and v0vi+1; ki ¼ jjv0v iþ1jj=jjv0v ijj is the length ratio between
v0vi and v0vi+1. In order to describe the scale-invariant intrinsic

Fig. 1. First order neighborhood of vertex.
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