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In this paper a simple and efficient algorithm for computing Boolean operations on polygons is presented.
The algorithm works with almost any kind of input polygons: concave polygons, polygons with holes,
several contours and self-intersecting edges. Important topological information, as the holes of the result
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1. Introduction

Boolean operations on polygons play an important role in dif-
ferent applied fields such as Computer Graphics, GIS or CAD.

Many algorithms have been developed for polygon clipping, in
which several polygons are clipped against a clipping polygon.
However, these algorithms often impose strong restrictions on
the clipping polygon. For example, some algorithms only work
with convex [1,2] or rectangular [3] clipping polygons.

For the general case of Boolean operations on polygons, i.e., con-
cave polygons with holes, several contours and self-intersections
less solutions are available. Greiner and Hormann propose a simple
and elegant algorithm [4], but it does not properly deal with
degenerate cases. However, the algorithm has been extended to
deal with degenerate cases [5] and even to cope with holes and
polygons with several contours [6]. Unfortunately, this last algo-
rithm is not so elegant as the original one.

Rivero and Feito [7] and Peng et al. [8] present simple methods,
from a mathematical point of view, for computing Boolean opera-
tions on polygons that are based on the simplex theory proposed
by Feito [9]. Unfortunately, these methods are difficult to imple-
ment, inefficient and produce a result polygon with almost null
topological information—just a list of unconnected edges.

From the field of Computational Geometry some algorithms
have been proposed for the more general problem of the overlay
of two subdivisions of the plane [10,11]. These algorithms extend
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the one by Bentley and Ottmann [12] for computing the intersec-
tion points in a set of line segments using the plane sweep tech-
nique. They compute the overlay in O((n + k) logn) time, where n
denotes the total number of edges of the input overlays and k is
the number of intersections between their edges. The algorithm
described in [10] does not deal with some degenerate cases, as it
is the case of input polygons with overlapping edges. Vatti [13]
has also presented a, less efficient algorithm, based on the plane
sweep paradigm. In [14] the sweep-line technique is used to com-
pute a data structure based on trapezoidal maps that allows to clip
polygons, a drawback of this approach is the O(n?) size of the data
structure.

In [15] we have also extended the algorithm by Bentley and Ott-
mann [12], but only for computing Boolean operations on polygons
in O((n+k) logn) time. Because we solve a simpler problem our
algorithm is also quite simpler and easier to understand than
[10,11]. However, the algorithm does not compute which of the re-
sult polygon contours are holes, this information is neither com-
puted by the other algorithms for computing Boolean operations
[4,7,8,13]. Owing to this information is important in some applica-
tions—for instance, it is needed for computing a polygon area—, in
this paper we present a modified algorithm that computes the
holes of the result polygon. Furthermore, the new algorithm uses
a simpler criterion for selecting and joining the edges belonging
to the result polygon.

The paper is structured as follows. In Section 2 the algorithm
and the format of the result polygon are sketched. Sections 3-5
give a detailed description of the algorithm. Section 6 analyzes
its running time and Section 7 explains how the degenerate and
special cases are dealt with. Section 8 explains some optimizations,
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Contour 0: A,B,C,D
Contour 1: E
Contour 2: H, K,
Contour 3: N
Contour 4: O, P,

Children of contour 0: 1, 2
Children of contour 2: 3

Fig. 1. Polygon specification.

in Section 9 an experimental comparison with Vatti’s algorithm is
made. Finally, Section 10 draws some conclusions.

2. Foundations

In this section the algorithm for computing Boolean operations
on polygons is outlined. First, the format of the result polygon is
explained.

2.1. Polygon specification

Our algorithm works with polygons that consist of several con-
tours. Each contour is a simple polygon and the edges of the con-
tours are interior disjoint. Next, we make the following definitions:

e External contour: it is a contour not included in any of the other
polygon contours.

e Internal contour: it is a contour included in at least one of the
other polygon contours.

e Parent contour. Given an internal contour C, let P be the contour
equals to the intersection of all the polygon contours that con-
tain C—i.e., the smaller contour that contains C. Then, we say
that P is the parent contour of C and that C is a child contour of P

A polygon consisting of several contours can be represented as
follows:

e The vertices of the contours included in an even number of con-
tours are listed in counter-clockwise order.

e The vertices of the contours included in an odd number of con-
tours are listed in clockwise order.

e For every parent contour its children contours are listed.

For example, Fig. 1 shows a polygon represented this way.
Given this representation the area of a polygon can be computed
as the sum of the signed areas of its contours. Note that the amount
of storage required by this representation is linear in the number of
vertices of the polygon.

The result polygon computed by our algorithm follows this rep-
resentation. However, our algorithm does not impose constraints
about the orientation of the vertices of the input polygons. The
contours of the input polygons can be listed clockwise or coun-
ter-clockwise, regardless they are included in an odd or even num-
ber of contours. It is neither necessary to specify child contours.
The only restriction imposed by our algorithm on an input polygon
is that two edges of the same polygon cannot overlap.

2.2. Outline of the algorithm

The boundary of the result of a Boolean operation on two poly-
gons consists of those portions of the boundary of each polygon
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Fig. 2. Boolean operations on polygons.

that lie inside—or outside, depending on the kind of operation—
the other polygon, see Fig. 2. For example, the intersection consists
of those portions lying inside, whereas the union consists of those
portions lying outside.

We propose the following scheme to compute a Boolean opera-
tion between two polygons:

1. Subdivide the edges of the polygons at their intersection points.

2. Select those subdivided edges that lie inside—or outside—the
other polygon.

3. Join the selected edges to form the contours of the result poly-
gon and compute the child contours.

The algorithm is based on the following idea: after subdividing
polygons edges at their intersection points—see Fig. 3—, a subdi-
vided edge lies inside or outside the other polygon and therefore
it belongs or not to the result polygon.

In the next sections the algorithm, which has two stages, is de-
scribed. In the first stage the polygon edges are subdivided and the
edges in the result polygon are selected. In the second stage the se-
lected edges are joined to form the contours of the result polygon
and the child contours are computed.

2.3. Computing the child contours

In this subsection we describe the approach used to compute
the child contours. Given a contour C and its bottom left vertex v
we shoot a vertical ray from v that goes downward. Let e € C; be
the first edge of the polygon crossed by the ray. e represents an

®&---d----a-0
H
L]
e
bt

’----.

*---¢9---0

*---@-----9

Fig. 3. Subdividing polygon edges at their intersection points.
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