
A proposal and verification of a software architecture based on LabVIEW
for a multifunctional robotic end-effector

José Marcos Silva Anjos, Guilherme Kisseloff Coracini, Emília Villani ⇑
Instituto Tecnológico de Aeronáutica, São José dos Campos, São Paulo 12228-900, Brazil

a r t i c l e i n f o

Article history:
Received 1 February 2012
Received in revised form 12 September
2012
Accepted 22 September 2012
Available online 31 October 2012

Keywords:
Discrete event systems
LabVIEW
Model checking
Model-based testing
Multifunctional end-effector
Software verification

a b s t r a c t

This paper proposes a software architecture based on LabVIEW for controlling discrete event systems. The
proposed architecture is an adaptation of the producer–consumer design pattern. This work uses the con-
trol software of a multifunctional robotic end-effector as a test-bed for analyzing the applicability of the
software architecture and its limitations and advantages. This case study demonstrates the effectiveness
of the architecture for dealing with the integration of multiple functionalities in the control system. For
this case study, the validation of the architecture is performed using two verification techniques: (1) a
formal verification using timed automata and the UPPAAL model checker and (2) the CoFI (Conformance
and Fault Injection) method for defining the set of test cases to check the software product. Both verifi-
cation techniques identified errors that were introduced into the control system during the programming
phase.

� 2012 Elsevier Ltd. All rights reserved.

1. Introduction

This paper discusses the problem of designing and verifying
control software for discrete event systems in LabVIEW. The moti-
vation for this work originated from a practical application in the
aircraft industry, the development of the control software for a
multifunctional robotic end-effector. The FARE (Fuselage Assembly
Robotic End-effector) is part of the ASAA (Aircraft Structure Assem-
bly Automation) project, a partnership between the Brazilian air-
craft industry and the Aeronautics Institute of Technology (ITA).

The FARE behavior is characterized primarily as a discrete event
system with time constraints. The use of LabVIEW as the program-
ming language for the FARE control system is a requirement of the
aircraft manufacturer because of its reduced development time,
scalability and ease of integration with hardware devices. LabVIEW
is a graphical programming environment that has been extensively
used in instrumentation and control applications. However, exam-
ples of discrete event control systems implemented in LabVIEW
are not common.

The development processes of discrete event control systems,
usually based on modeling techniques such as automata and Petri
nets, should be adapted to the graphical programming language of

LabVIEW. As off-the-shelf solutions for modeling discrete events
systems, LabVIEW has a state diagram toolkit for the implementa-
tion of finite state machines and a recently introduced statechart
module. Because of the limitations of these solutions for systems
with large numbers of states and transitions, this work presents
a proposal based on the producer–consumer design pattern.

The contribution of this work is the proposal, application and
validation of a software architecture for discrete event control
systems. This work uses the FARE as a test bed for analyzing the
applicability of the software architecture and its limitations and
advantages. A discussion regarding which technique should be
used to validate discrete event control systems developed in
LabVIEW is also a contribution of this paper. Two verification tech-
niques are used and analyzed in this paper: (1) a formal verifica-
tion using timed automata and the UPPAAL model checker and
(2) the CoFI (Conformance and Fault Injection) method for defining
the set of test cases used to check the software product.

The validation approach follows the steps illustrated in Fig. 1.
Starting from the software requirements, a partial version of the
FARE control software is developed. A corresponding model for
timed automata is developed and verified. The errors detected in
the timed automata model are used for correcting the software.
Concurrently, tests of the CoFI method are developed using the
requirements specified by the aircraft manufacturer and applied
to the partial version of the end-effector control software. The er-
rors detected are compiled in a list of lessons learned, which is
used for the development of the full version of the FARE control

0965-9978/$ - see front matter � 2012 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.advengsoft.2012.09.004

⇑ Corresponding author. Address. Instituto Tecnológico de Aeronáutica, Praça
Marechal Eduardo Gomes, 50, Vila das Acácias, CEP 12.228-900, São José dos
Campos, SP, Brazil. Tel.: +55 12 3947 5864; fax: +55 12 3947 6965.

E-mail addresses: jmarcos.anjos@gmail.com (J.M.S. Anjos), guilherme.coracini@
gmail.com (G.K. Coracini), evillani@ita.br (E. Villani).

Advances in Engineering Software 55 (2013) 32–44

Contents lists available at SciVerse ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://dx.doi.org/10.1016/j.advengsoft.2012.09.004
mailto:jmarcos.anjos@gmail.com
mailto:guilherme.coracini@ gmail.com
mailto:guilherme.coracini@ gmail.com
mailto:evillani@ita.br
http://dx.doi.org/10.1016/j.advengsoft.2012.09.004
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


software. The full version is submitted to functional tests for final
validation.

This work is organized as follows. The next section discusses re-
lated works. Section 3 describes the proposed architecture. Section
4 presents the FARE and the requirements for its control software.
Then, Section 5 describes the verification of the partial version of
the FARE software using the UPPAAL model checker and the appli-
cation of the CoFI model-based testing method. Section 6 discusses
some conclusions and future work.

2. Related work

The review of related work focuses on two topics: the control of
discrete event systems and development of software for discrete
event systems in LabVIEW.

One of the most important contributions for the control of dis-
crete event systems is the supervisory control theory (SCT) pro-
posed by Ramadage and Woham [20]. In the SCT, the plant is
modeled as a language generator specified over an alphabet of
events. The controller, called the supervisor, is synthesized to fulfill
a given specification. The supervisor restricts the behavior of the
plant by disabling controllable events.

Since 1989, many works by different authors have extended and
complemented the SCT. In this section, we focus on some works
that discuss modularity and implementation issues that may arise
when applying the SCT to industrial systems.

Dietrich et al. [8] address the problem of having a controller
that not only disables controllable events but also chooses an event
from the enabled ones. The chosen event is interpreted as a com-
mand given to the plant. This controller derived from the supervi-
sor is called an implementation of the supervisor. The work
discusses the problems, such as a blockage in the implementation
even if the original abstract supervisor is non-blocking, that may
arise because of the arbitrary choice of an implementation.

Miremadi et al. [17] propose a more expressive modeling for-
malism for treating large industrial systems. The proposal includes
a bottom-up structure in which the model of the plant and the
specifications are a result of the composition of sub-plants and
sub-specifications. The connection between the sub-models is per-
formed via the synchronization of shared events and shared vari-
ables. The shared variables are used as guard conditions and
actions that are associated with the occurrence of events. The
incorporation of shared variables addresses the problems that
may arises when the condition for a state change in one sub-model
depends on the current state of another sub-model. In a case study,
the proposal is applied to a flexible manufacturing cell in which
automated guided vehicles (AGVs) transport parts between differ-
ent stations.

Hellgren et al. [12] discuss the implementation of a modular
supervisory controller in a programmable logic controller (PLC).
They propose a parameterization of the supervisor model that re-
sults in a deterministic model suitable for implementation. The
implementation language used in the work is sequential function
charts (SFCs). A monolithic SFC implementation is obtained using
the modular supervisor.

Modularity is also exploited by De Queiroz and Cury [7]. The
authors present an extension of the SCT that addresses modular
specification and modular plants. Instead of employing a mono-
lithic supervisor for the entire plant, they employ a modular super-
visor for each specification. Issues related to the implementation of
the modular supervisor in a PLC are discussed, and a final structure
for the control program is proposed. In the example presented by
the authors, the language of the control program is the Ladder Dia-
gram. Leal et al. [14] also discuss the implementation of modular
supervisors in PLCs using the Ladder Diagram programming lan-
guage. Among the issues discussed in this work is the treatment
of events in a PLC scan cycle.

Oliveira et al. [18] present a method to check the consistency of
the implementation of a control system in Ladder Diagram that
uses ISA 5.2 binary logic diagrams for the corresponding specifica-
tion. The specification and the implementation are transformed
into eXtensible Markup Language (XML) files. Then, timed auto-
mata are generated automatically from the XML files according
to the syntax and semantics of the UPPAAL tool. Finally, confor-
mance testing is performed on the automata models to determine
whether the implementation is conforms to the specification.
Farines et al. [10] present an automatic approach to model and
verify PLC programs written in Ladder Diagram using the formal
language FIACRE. The purpose is to guarantee the satisfaction of
generic and application-oriented properties.

One important difference between the previous works and that
proposed in this paper is that almost all the previous works con-
sider a controller implementation in PLCs and, therefore, focus on
PLC programming languages, such as SFC and Ladder Diagram.
One consequence of using LabVIEW is that because it is not a lan-
guage dedicated to describe discrete event systems, the automatic
translation from LabVIEW to a formal language such as Petri nets
or automata is not trivial. In Section 5.1, this problem is discussed
using the FARE as an example. The purpose of translating the
LabVIEW program to automata is to perform formal verification
of properties and to assure the controller conforms to the
specification.

One important point common among these works and the pro-
posal of this paper is the focus on modularity as a way of dealing
with large systems. In this paper, modularity is achieved by
decomposing the plant into modules and then designing the con-
troller for each module as a consumer loop process, as detailed
in Section 3. The communication among the controller modules
is performed using shared variables and is coordinated by the con-
sumer structure.

FARE Software requirements

Specification of test cases 
(CoFI Methodology)

Elaboration of 
lessons learned

Correction of partial version
of FARE sw

Application of test 
cases 

Elaboration of partial 
version of FARE sw

Formal Verification 
UPPAAL

Elaboration and 
functional testing of 

full version

Fig. 1. Validation approach.

J.M.S. Anjos et al. / Advances in Engineering Software 55 (2013) 32–44 33



Download English Version:

https://daneshyari.com/en/article/568060

Download Persian Version:

https://daneshyari.com/article/568060

Daneshyari.com

https://daneshyari.com/en/article/568060
https://daneshyari.com/article/568060
https://daneshyari.com

