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In this work, preconditioners for the iterative solution by Krylov methods of the linear systems arising at
each Newton iteration are studied. The preconditioner is defined by means of a Broyden-type rank-one
update of a given initial preconditioner, at each nonlinear iteration, as described in [5] where conver-
gence properties of the scheme are theoretically proved. This acceleration is employed in the solution
of the nonlinear system of algebraic equations arising from the finite element discretization of two-phase
flow model in porous media. We report numerical results of the application of this approach when the
initial preconditioner is chosen to be the incomplete LU decomposition of the Jacobian matrix at the ini-
tial nonlinear stage. It is shown that the proposed acceleration reduces the number of linear iterations
needed to achieve convergence. Also, the cost of computing the preconditioner is reduced as this opera-

tion is made only once at the beginning of the Newton iteration.

© 2010 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.

1. Introduction

Newton’s method requires the solution of a number of linear
systems with the Jacobian J as the coefficient matrix. When J is
large and sparse, e.g. for problems arising from the discretization
of a nonlinear PDE, preconditioned Krylov based iterative schemes
can be employed for the solution of the linear system. As a result,
two nested iterative procedures need to be implemented. To avoid
oversolving, i.e. excessive and essentially useless iterations of the
inner scheme, it is crucial to employ an “inexact” technique [10].
This approach tries to control the number of linear iterations by
allowing the accuracy of the linear solver to vary across nonlinear
iterations [12].

There are many papers in the literature, trying to combine the
properties of the two nested iterative procedures. Among these
we quote [8,21] where multilevel preconditioners are proposed
for accelerating the solution of the Jacobian linear system. In [20]
the authors propose to exploit the underlying Krylov subspace
information from the linear solver in order to accelerate the non-
linear convergence of Newton-Krylov methods. In [9] the authors
try to accelerate the Newton convergence by making use of the
information gathered from the Krylov subspace generated by the
GMRES linear solver. Differently from their approach, we study
how preconditioning efficiency can be enhanced as the nonlinear
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iteration progresses. In fact, another crucial issue for the reduction
of total linear iterations is to use efficient preconditioning tech-
niques. In general, ILU-type preconditioners [22,23] can be em-
ployed and calculated at every nonlinear iteration. Techniques
for selectively evaluating a preconditioner P may be developed to
save on the cost of the calculation of the preconditioner. Note that
the two phases where efficiency can be mostly improved are the
cost of the linear system solution (thus including the number of
iterations) and the cost of preconditioner evaluation.

In this paper we are mainly concerned with the efficient pre-
conditioning of the linear system. The “optimal” preconditioner P
is aimed at clustering eigenvalues of PJ(x,). This can be accom-
plished for instance by minimizing the constant C of:

l2l - P(x)l| <C.  zen. (1)
This requires that information from the nonlinear iterative scheme
be taken into account in the evaluation of P.

The approach proposed in this paper is to solve the inner sys-
tems of the Newton method with an iterative Krylov subspace
method, starting with ILU(0) [22] computed from the initial Jaco-
bian and to update this preconditioner using a rank one sum. A se-
quence of preconditioners P, can thus be defined by imposing the
secant condition, as used in the implementation of Quasi-Newton
methods [11]. We choose to work with the Broyden update as de-
scribed for instance in [19], and analyze the theoretical properties
of the preconditioner and the numerical behavior of the resulting
scheme. We are aware that the choice Py = ILU(0) is not the only
possible alternative. Among the others we mention the class of
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approximate inverse preconditioners (see [6,2,3,14-16]) which are
particularly suited in a parallel environment. We choose to work
with the incomplete ILU factorization because of its wide-spread
use in this type of problems and its simplicity. Our strategy is
aimed to be independent of the initial preconditioner choice, i.e.
the scope of this paper is to construct a sequence of precondition-
ers that improves the initial one.

We successfully try our approach on a number of nonlinear
problems of large size arising from the finite element (FE) discret-
ization of two phase flow equations in porous media. The Broyden
acceleration provides in all the test cases a reduction of roughly
15% of the number of linear iterations and 10% of the total CPU
time.

The paper is organized as follows. The equations governing the
two phase flow model are given in Section 2. In Section 3, the
numerical treatment of the governing equations and a general ap-
proach of the obtained nonlinear system are studied. The Broyden-
type rank-one update of the initial preconditioner is discussed in
Section 4, where the algorithm is described. In Section 5, we report
numerical results in 2D and 3D cases. Finally, some conclusions are
given in Section 6.

2. Two phase-flow model: governing equations

Immiscible two-phase flow in porous media in isothermal con-
ditions is described by the mass conservation equation [1,17]:

(¢ Py Sa)
ot

where subscript « refers to wetting (w) and non-wetting (n) phase,
respectively (e.g. water and oil or water and gas). For each phase, S,
is the saturation, p, the density, v, the Darcy velocity, and g, the
mass source/sink rate. Finally, ¢ denotes the porous medium poros-
ity. The phase velocity is given by extending Darcy law:

Vy = —Ay ]:< (va — Py g)7 (3)

=V [PV +4, oaew,n, (2)

where the mobility 4, is defined as the ratio between relative per-
meability k,, and dynamic viscosity i, k is the intrinsic permeabil-

ity tensor, p, the a-phase pressure, and g the gravity acceleration
vector. Substitution of Eq. (3) into the continuity Eq. (2) yields:

(¢ Py Sa) _
T_v.

The solution of the PDE system (4) requires the following aux-
iliary relationships:
Sw+Si=1; pc(SW) =Dn — Dw> (5)

where p., the capillary pressure, is defined as the difference be-
tween the non-wetting and the wetting phase pressures. Substitut-
ing the auxiliary relationships (5) into the PDEs (4), and solving for
pw and S,,, the system can be written as:

(025 K(VDy = Py &)1+ s (4)

W =V [uw k(YD ~ P 8+ G )
W = V- [uin k(YD + VD, — Py 8)] + -

Appropriate initial and boundary conditions complete the mod-
el formulation.

Capillary properties can be described using a number of consti-
tutive laws, whose most widely used models are Brooks—Corey
(BC) [7] and Van Genuchten (VG) [25]. Brooks—Corey capillary laws
have the following representation:

krw(Sw) = S
pc(SW) =Da 5\}1&:

krn(Sw) = (1= Swe)* (1 —S59%)

where py is the pore entry pressure representing the lowest capil-
lary pressure needed to displace the wetting phase by the non-wet-
ting phase in a fully saturated medium, { the so called sorting factor
or pore distribution index which is related to the medium pore size
distribution. The sorting factor usually ranges between 0.2 (denot-
ing a wide range of pore sizes) and 7 (for very uniform materials),
Swe = (Sw — Swr)[(1 — Syr) is the effective water saturation, with S,
the irreducible water saturation. Van Genuchten constitutive laws
read as:

Krw(Sw) =S [1= (1= Sye")™?:
Pe(Sw) =po (S =)™,

kin(Sw) = (1= S.)"/2 (1= S}m)>m

where pg is the characteristic capillary pressure of the medium, and
m is related to the pore distribution. Eq. (6) represent a highly non-
linear system of PDEs and fluid densities and viscosities may also
depend on the corresponding phase pressure:

Pw = pw(pw)i Pn = pn(pn)§ My, = /“tw(pw):, = :un(pn)

3. Numerical model
3.1. Two-phase flow finite element equations

Eq. (6) are discretized in space using linear finite elements (tri-
angles in 2D and tetrahedra in 3D) yielding a system of first order
differential equations that reads:

o) [0 W] [8] 5] e g
H, M,]| |Sw 0 M,] [Sw q,

where H,,, H,, M,, and M,, are wetting and non-wetting stiffness and
mass matrices; [q., q.]7 incorporate source/sink terms and Neu-
mann boundary conditions; [p,,S,]” and [p., SW]T are the vectors
of the unknown nodal water pressure (p,,) and saturation (S,,), and
the corresponding time derivatives. Mass matrices M,, and M, are
lumped for stability reasons, while in the stiffness matrices H,, and
H,, hydraulic mobility is evaluated “fully upwind” [1,17,18] to en-
sure convergence of the nonlinear scheme to the correct physical
solution and to avoid undesirable oscillations when capillary forces
become small. Stiffness matrices H,, and H, are symmetric and posi-
tive definite and symmetric and positive semi-definite, respectively.

Mass matrices M,, and M,, are diagonal matrices. System (7) can be
written in a more compact form as:

Hx+Mx+q=0, (8)

where the meaning of the new symbols is derived by comparison of
Egs. (7) and (8). The time integration is implemented via Euler back-
ward FD, giving the following nonlinear system of algebraic
equations:

H+ o

M1
(m) _ g(m+1)
H+ X g, )

(m+1)
x(m+1): M "
At

where At is the time step size; (m) and (m + 1) indicate the previous
and the current time level, respectively.

3.2. General approach for nonlinear systems
The nonlinear system (9), which has the same form for both two
phase and unsaturated flow, is solved by Newton-like iterative

methods. To this aim, Eq. (9) is rewritten as:

F(X(mﬂ)) — A x(m+1) _ q=0, (10)
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