
An experimental approach to the performance penalty of the use of classes
in Fortran 95

Luit J. Slooten a,⇑, Fransisco Batle b, Jesus Carrera c

a Hydrogeology Group, Polytechnical University of Catalonia, Jordi Girona 1-3, Edificio D2, 08034 Barcelona, Spain
b Geomodels, Parc Cientific de Barcelona, Edifici Florensa, Universitat de Barcelona, C/Adolf Florensa s/n, 08028 Barcelona, Spain
c Jaume Almera Institute, Llus Sol i Sabars s/n, 08028 Barcelona, Spain

a r t i c l e i n f o

Article history:
Received 8 January 2008
Received in revised form 28 January 2010
Accepted 11 May 2011
Available online 15 June 2011

Keywords:
Fortran
Object-oriented
Performance
Abstraction
Software design
Finite elements

a b s t r a c t

Fortran 95 is used often for ‘‘number crunching’’: scientific and engineering applications where perfor-
mance is important and which operate with large datasets. The language allows the implementation of
certain elements of object oriented design, which facilitate code expansion, reuse and maintenance. In
this paper we discuss two series of tests to measure how different object oriented design elements of For-
tran 95 affect overall performance. The first series of tests consists of several implementations for mul-
tiplying two matrices. These tests are focused exclusively on computation time, not considering other
parts of the object life cycle such as construction and destruction. The second series consists of computing
a finite element matrix for a diffusion term. A more complex environment with different classes is stud-
ied. Here, we consider not only the time spent doing useful computations but the integral object life cycle.
Results show that object oriented design comes at a cost in all cases. However, given the right compiler,
using the right compiler optimization techniques and keeping the amount of objects and method calls
low, Fortran 95 designs can benefit from object oriented design techniques with a less than 10% running
time increase.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Mathematical modelling software is commonplace in many
branches of science and engineering, ranging from hydrogeology
to industrial design. The process of writing, debugging and testing
such software is often costly and lengthy. The same can often be
said about the simulations the end user makes with the product:
these may have long running times. This implies that finding a
proper trade-off between reusability and performance is especially
important. The object oriented programming (OOP) paradigm has
an excellent and proven reputation of allowing reusability and
extensibility ([15,6]). In OOP, problems are solved by representing
the different aspects of the problem to be solved by classes. This
can be done on all levels: on high levels (a class representing an
optimization problem), on intermediate levels (a class representing
a matrix) or on low levels (a class representing a real number).
However, it is well known that the use of small classes can cause
an important deterioration in performance. This extra cost associ-
ated to abstraction is compiler-dependent and diminishes with
increasing global optimization during compilation. A test problem

known as the Stepanov benchmark ([16,19]) was written for C++
with the aim of quantifying the cost of abstraction.

It is well known that the Fortran programming language can be
used to implement certain elements of object oriented designs (see
e.g. [1,12,21]) and that its compilers are widely respected for the
quality of their optimization. These two facts suggest that Fortran
programs could conceivably benefit from object oriented design
elements at a relatively low cost.

The objective of this paper is to explore the performance dete-
rioration caused by OO design in Fortran. In this work, Fortran 95
was used, which contains enough support for OOP to be able to
benefit from it. Still, it is not very common to use OO design ele-
ments in Fortran 95 applications. This is reflected by the fact that
benchmarks for Fortran 95 compiler testing hardly use OO design
elements (e.g. [13,22,10]).

First, a set of synthetic tests loosely inspired on the Stepanov
benchmark is discussed to study the abstraction penalty associated
to different designs. A matrix–matrix multiplication is gradually
made more reusable, by representing the matrix as a data type,
gradually encapsulating it and finally representing the matrix ele-
ments themselves as encapsulated data types. In the second part,
we test three designs on a code that computes a finite element ma-
trix. The implementations are compared in terms of performance
and potential for expansion and reuse. One of the implementations

0965-9978/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.advengsoft.2011.05.011

⇑ Corresponding author. Tel.: +34 93 401 7247; fax: +34 93 401 7251.
E-mail address: luitjan.slooten@upc.edu (L.J. Slooten).

Advances in Engineering Software 42 (2011) 735–742

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://dx.doi.org/10.1016/j.advengsoft.2011.05.011
mailto:luitjan.slooten@upc.edu
http://dx.doi.org/10.1016/j.advengsoft.2011.05.011
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


is in purely procedural Fortran 77-style, whereas the other two
have been programmed with a varying degree of object oriented
orthodoxy.

2. An overview of OOP

This section contains a summary of OO concepts. It is provided
for the sake of completeness, and can be skipped by readers famil-
iar with these subjects. For others, useful books on the subject of
OOP are e.g. [4,3]. Additional information on the use of Fortran
95 for OOP in general can be found in e.g. [12,1,21,17]. Information
on how to use design patterns in Fortran can be found in [9].

In the object oriented paradigm, the problem that is to be solved
by a program is represented by ‘‘objects’’. An object can be any-
thing, from a matrix or an equation to a screen window. Each of
these objects has associated data (its ‘‘attributes’’) and functional-
ity (its ‘‘methods’’). An abstract definition of the attributes and
methods of objects of a certain type is called a ‘‘class’’ and serves
as a blueprint of objects. It is possible to define a class A in terms
of another class B. This can be done either by including objects of
type B in the type defined in class A (Composition) or by defining
the class A as a specialization of class B. In this case, class A will
be supposed to store the same data and show the same behavior
as class B, unless otherwise stated. This is known as inheritance.
Thus, the programmer is only required to program the differences
between A and B. In this example, B is termed the base class of A.

Encapsulation is the practice of strictly separating interfaces
from implementation. In other words, the way of accessing data
or functionality from objects is separated from the actual imple-
mentation. The motivation for this is that this implementation
may change when the code is maintained or expanded. Encapsula-
tion limits the effect that these changes will have on the rest of the
code.

2.1. Implementing object oriented designs in Fortran

Fortran 95 does not explicitly support OO concepts such as clas-
ses, objects or encapsulation. However, classes as described above
can be made using Fortran modules. In a module, one can define an
‘‘abstract data type’’ as a tuple of variables of standard Fortran
types, and other abstract data types. Additionally, the module al-
lows defining subroutines and functions that have variables of
the abstract data type as formal parameters. Finally, the module al-
lows specifying interfaces for these subroutines. These three capa-
bilities are everything that is needed to implement classes. In the
rest of this paper, we will use the word ‘‘class’’ to refer to a Fortran
module with an abstract data type, subroutines and interfaces.
Encapsulation of data can be achieved in Fortran by using the pri-
vate attribute on abstract data type members. The result of this is
that while users of a module may still declare variables of the type
defined in the module, they may not directly access its attributes.
Encapsulation of functionality can be achieved through the inter-
faces defined in the modules.

Implementing composition of classes in Fortran is straightfor-
ward: it can be done by constructing abstract data types that con-
tain other abstract data types as attributes. Inheritance is not
supported, and can be emulated in part as discussed in [8]. This
way of achieving inheritance is less powerful than the way inher-
itance is supported in many pure OO languages, and costs a bit
more work. However, the main advantages of specialization inher-
itance are preserved: the specific specialization type of an instance
of B can be set during runtime, and the code re-use associated to
this kind of inheritance is preserved. As such Fortran programs
can benefit from it.

2.2. Limitations of Fortran 95

Fortran 90/95 allows no parametric polymorphism. This means,
that it is impossible to write code without specifying the type of
the variables which appear in the code. This is a drawback, as para-
metric polymorphism is often used for implementing tools of gen-
eral use (‘‘foundation classes’’), such as linked lists, stacks, and
iterators. In Fortran, such constructs must be made for each data
type separately.

It is also impossible to establishing circular module references.
If a module A contains a use statement for module B, then module
B cannot contain a use-statement for module A. When using mod-
ules to define classes, this means that a class A cannot use any ob-
ject or method defined in module B if module B contains a use-
statement of module A. This lack of circular referencing must be ta-
ken into account starting from the earliest design phase of a
program.

Although Fortran 95 allows the use of pointers, and a variable of
type A can be declared as being a pointer to an object of type A,
there is no easy way to define an array of pointers. Declaring a var-
iable to be an array and to be a pointer, has the effect of making the
variable a pointer to an array, not an array of pointers. This can be
overcome by making a data type B containing as its sole attribute a
pointer p_A to a variable of type A. By creating an array of variables
of type B an array of pointers to objects of type A is obtained. An
unfortunate consequence of A and B having different type signa-
tures is that subroutines operating over an array of type A cannot
be used to operate over an array of type B.

Fortran 95 is a modern programming languages with an unu-
sual richness in intrinsic mathematical functions. Many of these
functions can operate both over scalars and over arrays, improving
readability by making many loop structures unnecessary. It allows
the use of pointers, dynamic allocation of memory and supports
the use of modules. Furthermore, user defined procedures can be
written in terms of scalars, and if they have no side effects, can
be declared ‘‘elemental’’ and can then be used over arrays.

The limitations of Fortran with respect to OO language features
limit the amount of abstraction that can be achieved in Fortran
code. However, the features that it does implement or that can
be emulated, can be put to use to implement object oriented de-
signs and to benefit from the advantages associated to this. The
true strengths of Fortran do not lie in the field of pure OO program-
ming, but rather in functionality that can be put to use both in a
procedural and in a OO environment. The most important of these
are the array language and the large amount of intrinsic mathe-
matical functions. A discussion on the choice of programming lan-
guages in scientific applications is given in [14]. Comparisons
between C, C++ and Fortan90 can be found in terms of performance
in [20], whereas a more qualitative comparison is presented in [5].
The conclusions reached in these last two papers are somewhat in
disagreement, underlying the complexity of the issue.

3. Optimization

The aim of compiler optimization is usually to maximize the
execution speed of the compiled program. Applying optimization
reduces the amount of technical know-how required for making
fast applications, allowing the programmer to favor more readable
and intuitive constructs. When compiler optimization is applied,
the set of instructions contained in the executable program stops
being a literal ‘‘translation’’ of the source code, and rather becomes
an ‘‘equivalent’’ set of instructions, in the sense that the result is
the same. As object oriented programming is known to have a cer-
tain extra cost (‘‘overhead’’) associated a.o. to an increase in func-
tion calls, the subject of optimization is important because it is

736 L.J. Slooten et al. / Advances in Engineering Software 42 (2011) 735–742



Download	English	Version:

https://daneshyari.com/en/article/568075

Download	Persian	Version:

https://daneshyari.com/article/568075

Daneshyari.com

https://daneshyari.com/en/article/568075
https://daneshyari.com/article/568075
https://daneshyari.com/

