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a b s t r a c t

Based on the concepts of eigenstrain and equivalent inclusion of Eshelby for inhomogeneity problems, a
computational model and its solution procedure are presented using the proposed three-dimensional
(3D) eigenstrain formulation of boundary integral equations (BIE) for simulating ellipsoidal particle-rein-
forced (and/or void-weakened) inhomogeneous materials. In the model, the eigenstrains characterizing
deformation behaviors of each particle embedded in the matrix are determined using an iterative scheme
with the aid of the corresponding Eshelby tensors, which can be obtained beforehand either analytically
or numerically. With the proposed numerical model, the unknowns of the problem appear only on the
boundary of the solution domain, since the interface condition between particles/voids and the matrix
is satisfied naturally. The solution scale of the inhomogeneity problem can thus be significantly reduced.
Using the algorithm, the stress distribution and the overall elastic properties are identified for ellipsoidal
particle-reinforced/void-weakened inhomogeneous materials over a representative volume element
(RVE). The effects of a variety of factors on the overall properties of the materials as well as the conver-
gence behavior of the algorithm are studied numerically, showing the validity and efficiency of the pro-
posed algorithm.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Determination of the elastic behavior of an inclusion embedded
in a matrix is of considerable importance in a wide variety of phys-
ical and engineering problems. Following the pioneering work of
Eshelby [1,2], inclusion and inhomogeneity problems have been a
focus of solid mechanics for several decades. Due to Eshelby’s work
on an equivalent inclusion and eigenstrain solution, numerous
investigations both analytical [3–9] and numerical [10–17] have
been reported in the literature. In various physical problems, the
eigenstrain can represent thermal mismatch, lattice mismatch,
phase transformation, microstructural evolution, and intrinsic
strains in residual stress problems [18]. Eshelby’s solution is of
great versatility and has been employed to address a wide range
of physical problems in materials science, mechanics, and physics.

The analytical equivalent inclusion models available in the liter-
ature can be taken as the basis for predicting stress/strain distribu-
tion either within or outside the inhomogeneity and for further
study of the mechanical performance of heterogeneous materials.
However, the available solutions apply generally to only simple

geometries such as single ellipsoidal, cylindrical and spherical
inclusions in an infinite domain, because of the complexity of the
mathematical expression and difficulty in solving the correspond-
ing governing equations in 3D systems. Therefore, numerical
methods including finite element methods (FEM), volume integral
methods (VIM) and boundary element methods (BEM) have been
used in the analysis of inhomogeneity problems involving various
shapes and materials. The FEM may yield results for the entire
composite materials, including results within the inhomogeneity
[11], but the solution scale would be very large since both matrix
and inhomogeneities must to be discretized. The VIM and the
BEM seem more suitable than the FEM for the solution of inhomo-
geneity problems in comparison. In the VIM [12–14], the domains
of inhomogeneity are represented by volume integrals, essentially
simplifying the construction of the final matrix of the linear alge-
braic system to which the problem is reduced to some extent after
the discretization. However, as the interfaces between matrix and
inclusion need to be discretized in the VIM, it is suitable for small
scale problems with only a few inhomogeneities. The situation in
the application of the BEM to inclusion problems, often coupled
with VIM [15,16], is much the same as that of the VIM in which
problems of simple arrays of inclusions are solved on a small scale,
for a similar reason to that in the VIM, i.e., unknowns appearing in
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the interfaces. For large-scale problems of inhomogeneity with the
BEM [17], special techniques of fast multipole expansions [19]
must be employed, which leads to complexity of the solution
procedure.

To the authors’ knowledge, the potential engineering applications
of Eshelby’s idea of equivalent inclusion and eigenstrain solution
have not yet been fully explored in the area of computational treat-
ment of materials with inhomogeneities [20]. With Eshelby’s idea as
the basis, Ma et al. [21] recently proposed the eigenstrain formula-
tion of the BIE for modeling elliptical particle-reinforced materials
in two-dimensional elasticity. In the present work, that computa-
tional model is extended to the three-dimensional case by incorpo-
rating the corresponding BEM for analyzing the stress/strain
behavior of ellipsoidal particle-reinforced/void-weakened materials.

2. Eigenstrain formulations of BIE

In the present model, perfect adhesion between the particle and
the matrix, both being isotropic materials, is assumed, so that the
displacement continuity and the traction equilibrium still hold
true along their interfaces. The solution domain considered is a fi-
nite region X filled with the matrix and inclusions, bounded by the
outer boundary C. The domain of the inhomogeneity is denoted by
XI with the boundary CI(CI = XI \X). The displacement and stress
fields of the problem can be described by the eigenstrain formula-
tions of the BIE [21,22] as follows:
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in which Xe (surrounded by the boundary Ce) represents an infini-
tesimal zone within XI when the source point p approaches the field
point q [23] and xl = xl(q) � xl(p). In Eqs. (1) and (2), u�ij, s�ij and r�ij
stand for the Kelvin’s fundamental solutions for displacements,
tractions and stresses, respectively. u�ijk, s�ijk and r�ijk are correspond-
ingly the derived fundamental solutions [21,22]. NI is the total num-
ber of particles in the domain X.

In Eshelby and Mura’s terminology [3], an inclusion is a
bounded region within a material with the same material proper-
ties as the surrounding material but containing a stress-free trans-
formation strain or eigenstrain. In contrast, an inhomogeneity (a
particle) existing in a bounded region within a material has differ-
ent material properties and may (or may not) contain an eigen-
strain. Eshelby showed [1,2] that an inhomogeneity under
loading can be simulated via an equivalent inclusion containing a
fictitious eigenstrain, e0

ij, expressed by domain integrals in Eqs.
(1) and (2), the so-called the eigenstrain formulations. The eigen-
strains of particles here are determined using an iterative scheme,
which will be described in detail in the following section. Obvi-
ously, the eigenstrains in each particle depend on the applied stres-
ses or strains, the geometry of the particle, as well as the material
constants of particle and matrix.

Eshelby’s original work [1,2] related the constrained strain eC
ij

developed in an inclusion located in an infinite matrix to the eigen-

strain (the stress-free strain or the transformation strain) e0
ij via

what is now widely known as the Eshelby tensor Sijkl, that is

eC
ij ¼ Sijkle0

kl ð4Þ

The Eshelby tensor Sijkl is geometry dependent only, and gener-
ally takes the form of integrals. For simple geometries, the compo-
nents of Sijkl can be given explicitly and are available, for example,
in the literature [1,4,9] or can be computed numerically [21] by
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where Cijkl is the compliance tensor of the matrix, l the shear mod-
ulus. By defining the Young’s modulus ratio b = EI/EM, where the
subscripts I and M represent the inhomogeneity (particle) and the
matrix, respectively, the following relation holds true according to
Hooke’s law. If a particle is subjected to an applied strain eij, it
can be replaced by an equivalent inclusion without altering its
stress state:
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and v is Poisson’s ratio. Combining Eqs. (4) and (6), the eigenstrains
in each particle can be estimated from the given applied strains.

3. Solution procedures

The present computational model for ellipsoidal particle-rein-
forced materials is solved numerically by way of the BEM [22]. In
order to avoid domain discretization, the domain integrals in Eqs.
(1) and (2) need to be transformed into boundary-type integrals
before discretization, as [23]Z
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in which the eigenstrains in each particle are assumed to be con-
stant. It is noted that the applied strains (or the applied stresses)
over each particle are disturbed by other particles, especially those
near the particle of interest, because the eigenstrain in a particle
will induce a self-balanced stress field in both the particle and the
matrix. In addition to the applied load, the eigenstrain-induced
stresses outside the particle are superimposed on other particles.
As a result, the applied strains with regard to the eigenstrains are
corrected in an iterative way in the solution procedure. After dis-
cretization and incorporated with the boundary conditions, Eq. (1)
can be written in matrix form as:

Ax ¼ bþ Be ð10Þ

where A is the system matrix, B the coefficient matrix for eigen-
strains, b the right vector related to the known quantities applied
on the outer boundary, x the vector unknowns to be solved. e is
the eigenstrain vector of all the particles to be corrected in the iter-
ation. It should be mentioned that the coefficients in A, B and b are
all constants, and thus need to be computed only once. At the start-
ing point, the vector e is assigned by initial values for the applied
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