
jMetal: A Java framework for multi-objective optimization

Juan J. Durillo, Antonio J. Nebro ⇑
Departamento de Lenguajes y Ciencias de la Computación, University of Málaga, Spain

a r t i c l e i n f o

Article history:
Received 30 November 2009
Received in revised form 19 November 2010
Accepted 16 May 2011
Available online 12 June 2011

Keywords:
Multi-objective optimization
Metaheuristics
Software tool
Object-oriented architecture
Performance assessment support
Experimentation

a b s t r a c t

This paper describes jMetal, an object-oriented Java-based framework aimed at the development, exper-
imentation, and study of metaheuristics for solving multi-objective optimization problems. jMetal
includes a number of classic and modern state-of-the-art optimizers, a wide set of benchmark problems,
and a set of well-known quality indicators to assess the performance of the algorithms. The framework
also provides support to carry out full experimental studies, which can be configured and executed by
using jMetal’s graphical interface. Other features include the automatic generation of statistical informa-
tion of the obtained results, and taking advantage of the current availability of multi-core processors to
speed-up the running time of the experiments. In this work, we include two case studies to illustrate the
use of jMetal in both solving a problem with a metaheuristic and designing and performing an experi-
mental study.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Most of the optimization problems in the real world are multi-
objective in nature, which means that solving them requires to
optimize two or more contradictory functions or objectives. These
problems are known as multi-objective optimization problems
(MOPs). The searched optimum of this kind of problems is not a
single solution as in the mono-objective case, but a set of solutions
known as the Pareto optimal set. Any element in this set is no better
than the other ones for all the objectives. This set is given to the
decision maker, who has to choose the best trade-off solution
according to his/her preferences. As whatever optimization prob-
lem, MOPs may present features such as epistasis, deceptiveness,
or NP-hard complexity [1], making them difficult to solve. Further-
more, if we consider engineering problems, we find frequently that
some of the functions composing them are non-linear and they can
be computationally expensive to evaluate.

In those situations, exact techniques are often not applicable, so
approximated methods are mandatory. Like in mono-objective opti-
mization, metaheuristics [2,3] are approximated algorithms for
solving MOPs. Among them, evolutionary algorithms are very popu-
lar [4,5], and some of the most well-known algorithms in this field
belong to this class (e.g. NSGA-II [6], PAES [7], SPEA2 [8]). Neverthe-
less, other metaheuristic techniques are also gaining momentum, as
particle swarm optimization [9].

Multi-objective optimization using metaheuristics is an active
research field where new techniques are continuously being

proposed to cope with real settings (such as uncertainty and noise,
many-objective optimization, and convergence speed). In this con-
text, the use of software frameworks is a valuable tool for helping
in the implementation of new ideas, facilitated by reusing code of
existing algorithms, and for understanding the behavior of existing
techniques. Desirable features of these kinds of software tools
comprise:

� to include state-of-the-art algorithms,
� to contain commonly accepted benchmark MOPs,
� to provide quality indicators for performance assessment, and
� to assist users in carrying out research studies.

Some years ago, it was difficult to find any software package sat-
isfying those requirements. The implementation in C of NSGA-II, the
most used multi-objective metaheuristic algorithm, was publicly
available,1 but it was difficult to be used as the basis of new
algorithms, in part due to its lack of an object-oriented design. An
interesting choice was (and still is) PISA [10], a C-based framework
for multi-objective optimization which is based on separating the
algorithm specific part of an optimizer from the application-specific
part. This is carried out using a shared-file mechanism to communi-
cate the module executing the application with the module running
the metaheuristic. However, a drawback of PISA is that their internal
design hinders to reuse code.

Those reasons leaded us to develop a new software toolbox
starting from scratch, and the result was jMetal, a Java-based
framework designed to multi-objective optimization using
metaheuristics. We imposed ourselves as design goals that jMetal

0965-9978/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.advengsoft.2011.05.014

⇑ Corresponding author.
E-mail addresses: durillo@lcc.uma.es (J.J. Durillo), antonio@lcc.uma.es (A.J.

Nebro). 1 NSGA-II: http://www.iitk.ac.in/kangal/codes.shtml.

Advances in Engineering Software 42 (2011) 760–771

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://dx.doi.org/10.1016/j.advengsoft.2011.05.014
mailto:durillo@lcc.uma.es
mailto:antonio@lcc.uma.es
http://www.iitk.ac.in/kangal/codes.shtml
http://dx.doi.org/10.1016/j.advengsoft.2011.05.014
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft

should be simple and easy to use, portable (hence the choice of
Java), flexible, and extensible [11]. Nowadays, jMetal is publicly
available to the community of people interested in multi-objective
optimization. It is licensed under the GNU Lesser General
Public License,2 and it can be obtained freely from http://jmetal.
sourceforge.net.

During the development of jMetal, other Java-based software
tools have emerged, e.g., EVA2,3 OPT4j,4 or ECJ.5 Other similar tools
based in other programming languages have also come into light, as
MOEAT [12], that is implemented in C#, what restricts them only to
Windows-based PCs. All these toolboxes can be useful enough for
many researchers. However, while jMetal is specifically oriented to
multi-objective optimization with metaheuristics, most of those
frameworks are mainly focused on evolutionary algorithms, and
many of them are centered in single-objective optimization, offering
only extensions to the multi-objective domain.

jMetal has the following features that, all together, make our
framework a unique system compared to existing proposals:

� Implementation of a number of modern multi-objective optimi-
zation algorithms: NSGA-II [6], SPEA2 [8], PAES [7], PESA-II [13],
OMOPSO [14], MOCell [15], AbYSS [16], MOEA/D [17], Densea
[18], CellDE [19], GDE3 [20], FastPGA [21], IBEA [22], SMPSO
[23], MOCHC [24], and SMS-EMOA [25].
� Validation of the implementation: we compared our implemen-

tations of NSGA-II and SPEA2 with the original versions, achiev-
ing competitive results [11].
� A rich set of test problems including:

– Problem families: Zitzler–Deb–Thiele (ZDT) [26], Deb–
Thiele–Laumanns–Zitzler (DTLZ) [27], Walking-Fish-Group
(WFG) test problems [28]), CEC2009 (unconstrained prob-
lems) [29], and the Li-Zhang benchmark [17].

– Classical problems: Kursawe [30], Fonseca and Flemming
[31], Schaffer [32].

– Constrained problems: Srinivas [33], Tanaka [34], Osyczka2
[35], Constr_Ex [6], Golinski [36], Water [37].

� Implementation of the most widely used quality indicators:
Hypervolume [38], Spread [6], Generational Distance [39],
Inverted Generational Distance [39], Epsilon [40].
� Different variable representations: binary, real, binary-coded

real, integer, permutation.
� Support for performing experimental studies, including the

automatic generation of LaTeX tables with the results after
applying quality indicators, statistical pairwise comparison by
using the Wilcoxon test to the obtained results, and R (http://
www.r-project.org/) boxplots summarizing those results. In
addition, jMetal includes the possibility of using several threads
for performing these kinds of experiments in such a way that
several independent runs can be executed in parallel using
modern multi-core CPUs.
� A Graphical User Interface (GUI) for giving support in solving

problems and performing experimental studies.
� A Web site (http://jmetal.sourceforge.net) containing the source

codes, the user manual and, among other information, the
Pareto fronts of the included MOPs, references to the imple-
mented algorithms, and references to papers using jMetal.

We have used jMetal in a number of works: we have proposed
new multi-objective techniques (AbYSS [16], a scatter search algo-
rithm; SMPSO, a particle swarm optimization technique [23]; or
CellDE [19], a cellular genetic algorithm hybridized with

differential evolution) and we have investigated properties of
state-of-the-art multi-objective optimizers (convergence speed
[41], behavior when solving parameter scalable problems [42,43],
or the influence of using a steady-state selection scheme in mul-
ti-objective genetic algorithms [44]). Besides our own work, jMetal
has been used by other groups, as it can be seen in the publication
section of jMetal’s Web site.

In this paper, our purpose is to describe jMetal (version 3.1) and
how it can be used by people interested in using metaheuristics for
solving MOPs. Since many researches in the multi-objective field
are not only interested in solving a given problem but also in
assessing the performance of different algorithms and comparing
them when solving a given benchmark, we also describe here
how to use our tool in that sense. In particular, to cope with this
last issue, we have considered a case study consisting in solving
a benchmark composed of four constrained problems (Osyczka2,
Srinivas, Golinski, and Tanaka) by using four different multi-objec-
tive algorithms (NSGA-II, SPEA2, MOCell and AbYSS).

The content of this paper can be summarized as follows. In the
next section we include some background on multi-objective opti-
mization. Section 3 is aimed at presenting the jMetal architecture
and its main components. The quality indicators included in jMetal
are described in Section 4. We describe in Section 5 how to extend
the framework with a new problem and solving it. After that, we
explain hot to develop an algorithm using jMetal. Section 7 is de-
voted to describing the case study and how the framework can
be used to carry out a full comparison of experiments. Finally, Sec-
tion 8 presents the conclusions and further work.

2. Multi-objective background

In this section, we include some background on multi-objective
optimization. We define formally the concept of MOP, Pareto opti-
mality, Pareto dominance, Pareto optimal set, and Pareto front. In
these definitions we are assuming, without loss of generality, that
minimization is the goal for all the objectives. A general MOP can
be formally defined as follows:

Definition 1 (MOP). Find a vector~x� ¼ x�1; x
�
2; . . . ; x�n

� �
which satis-

fies the m inequality constraints gið~xÞP 0; i ¼ 1;2; . . . ;m, the p
equality constraints hið~xÞ ¼ 0; i ¼ 1;2; . . . ; p, and minimizes the
vector function~f ð~xÞ¼ f1ð~xÞ;f2ð~xÞ; . . . ;fkð~xÞ½ �T , where ~x¼½x1;x2; . . . ;xn�T
is the vector of decision variables.

The set of all values satisfying the constraints defines the
feasible region X and any point ~x 2 X is a feasible solution. As
mentioned before, we seek the Pareto optima. More formally:

Definition 2 (Pareto optimality). A point~x� 2 X is Pareto Optimal if
for every~x 2 X and I = {1,2,. . .,k} either 8i2I fið~xÞ ¼ fið~x�Þð Þ or there is
at least one i 2 I such that fið~xÞ > fið~x�Þ.

This definition states that~x� is Pareto optimal if no other feasi-
ble vector ~x exists which would improve some criteria without
causing a simultaneous worsening in at least one other criterion.
Other important nomenclature associated with Pareto optimality
are defined below:

Definition 3 (Pareto dominance). A vector~u ¼ ðu1; . . . ;ukÞ is said to
dominate ~v ¼ ðv1; . . . ;vkÞ (denoted by ~u^~v) if and only if ~u is
partially less than ~v , i.e., "i 2 {1,. . .,k}, ui 6 vi ^ $i 2 {1,. . .,k}: ui < vi.

Definition 4 (Pareto optimal set). For a given MOP~f ð~xÞ, the Pareto
optimal set is defined as P� ¼ f~x 2 Xj:9~x0 2 X;~f ð~x0Þ ~̂f ð~xÞg.

Definition 5 (Pareto front). For a given MOP ~f ð~xÞ and its Pareto
optimal set P�, the Pareto front is defined as PF � ¼ f~f ð~xÞ;~x 2 P�g.

2 LGPL License: http://creativecommons.org/licenses/LGPL/2.1/.
3 EVA2: http://www.ra.cs.uni-tuebingen.de/software/EvA2/.
4 OPT4j: http://opt4j.sourceforge.net/.
5 ECJ: http://cs.gmu.edu/eclab/projects/ecj/.

J.J. Durillo, A.J. Nebro / Advances in Engineering Software 42 (2011) 760–771 761

http://jmetal.sourceforge.net
http://jmetal.sourceforge.net
http://www.r-project.org/
http://www.r-project.org/
http://jmetal.sourceforge.net
http://creativecommons.org/licenses/LGPL/2.1/
http://www.ra.cs.uni-tuebingen.de/software/EvA2/
http://opt4j.sourceforge.net/
http://cs.gmu.edu/eclab/projects/ecj/

Download English Version:

https://daneshyari.com/en/article/568078

Download Persian Version:

https://daneshyari.com/article/568078

Daneshyari.com

https://daneshyari.com/en/article/568078
https://daneshyari.com/article/568078
https://daneshyari.com

