
Cluster-based application mapping method for Network-on-Chip

Suleyman Tosun ⇑
Computer Engineering Department, Ankara University, Besevler, 06500 Ankara, Turkey

a r t i c l e i n f o

Article history:
Received 29 March 2011
Received in revised form 11 May 2011
Accepted 6 June 2011
Available online 7 July 2011

Keywords:
Network-on-Chip
Mesh topology
Application mapping
Clustering
ILP
Communication

a b s t r a c t

Network-on-Chip (NoC) is a newly introduced paradigm to overcome the communication problems of
System-on-Chip architectures. Mapping applications onto mesh-based NoC architecture is an NP-hard
problem and several heuristic methods have been presented to solve it so far. Scalability is the main prob-
lem of the heuristic methods and it is very difficult to conclude that one heuristic is better than the oth-
ers. Integer Linear Programming (ILP) based methods determine the optimum mappings. However, they
take very long execution times. In this paper, we propose a clustering based relaxation for ILP formula-
tions. Our experiments conducted on several multimedia benchmarks and custom graphs show that the
proposed method obtains optimal or close to optimal results within tolerable time limits.

� 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Network-on-Chip (NoC) has been proposed in the beginning of
this century as a new communication infrastructure for integrated
circuits [1,2]. NoC architectures mimic the traditional interconnec-
tion network concepts. Although there are various topologies exist
for NoC architectures, the basic and well accepted topology is the
mesh topology. Even commercial multi-core architectures have
already adopted mesh based topology such as Intel’s Teraflops
Research Chip [3]. In this chip, 80 processing cores are connected
in a 2D mesh network. One of the biggest problems of the mesh-
based NoC architecture remains as optimum application mapping.

Application mapping onto mesh topologies has been a well
known NP-hard problem [4]. There have been several methods
[5–10] proposed so far to solve it, mainly having the energy mini-
mization as an objective criteria. While [2] presents a mapping
algorithm called PMAP that supports single-minimum-path rout-
ing and split-traffic routing, [6] proposes a fast branch-and-bound
algorithm that exploits the routing flexibility and improves the
solution quality. MOCA [7] uses slicing tree based task mapping
and generates routes on the mapping result. ONYX [8] and CastNet
[9] are two heuristic methods that use the symmetric property of
the mesh as a starting point. ONYX maps the tasks based on the
lozenge-shaped path order, whereas CastNet maps them one by
one based on the communication weights between candidate tasks
and mapped tasks. CGMAP [10] employs chaos-genetic-based algo-
rithm that obtains close results compared to other meta-heuristic

algorithms. However, none of these methods guarantee the opti-
mal mapping onto mesh architectures.

The optimum solutions can be obtained by Integer Linear
Programming (ILP) based methods. ILP is a mathematical method
for obtaining the best solution among several alternatives. Our
mapping problem can be expressed as a linear programming prob-
lem having the communication cost minimization as an objective
function. However, since the ILP method searches for every possi-
ble solution in the huge solution space, it may take very long CPU
times to determine the optimum solution. Our earlier work in [11]
demonstrates this performance bottleneck of ILP-based method.
While one solution to overcome this timing problem can be effi-
cient numerical implementation of Simplex method as suggested
in [12] another solution can be decomposing the constraint vari-
ables into finite number of polyhedral and solve for each decompo-
sition. In our case, we picked the latter method.

In this paper, we present a cluster-based ILP formulation for
application mapping problem for mesh-based NoC architectures.
Our method partitions the task graph, representing the given appli-
cation, and the mesh into smaller sub-graphs and sub-meshes to
decompose the given solution space into smaller polyhedral. It then
maps each sub-graph onto the corresponding sub-mesh using our
ILP-based method. Finally, it merges each mapping to determine
the final solution. We implemented our method using commercial
ILP tool [13] and tested its effectiveness on several multimedia
benchmarks and randomly generated graphs. Our experiments
show that the proposed method is very effective to reduce the exe-
cution times of ILP method while determining similar results.

The rest of this paper is organized as follows. Section 2 defines
the mapping problem. Section 3 presents the ILP formulations.

0965-9978/$ - see front matter � 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.advengsoft.2011.06.005

⇑ Tel.: +90 544 337 6547.
E-mail address: stosun@ankara.edu.tr

Advances in Engineering Software 42 (2011) 868–874

Contents lists available at ScienceDirect

Advances in Engineering Software

journal homepage: www.elsevier .com/locate /advengsoft

http://dx.doi.org/10.1016/j.advengsoft.2011.06.005
mailto:stosun@ankara.edu.tr
http://dx.doi.org/10.1016/j.advengsoft.2011.06.005
http://www.sciencedirect.com/science/journal/09659978
http://www.elsevier.com/locate/advengsoft


Section 4 presents our cluster-based mapping method. Section 5
gives the experimental results. Finally, Section 6 concludes this
paper.

2. Problem definition

In this section, we formally define the application mapping
problem. We use communication task graph (CTG) and topology
graph (TG) to represent the given application and the mesh archi-
tecture, respectively.

Definition 1. A CTG is a graph G(V,E), where each vertex vi 2 V
represents a task in the application and each edge ei,j 2 E represents
a dependency between two tasks vi and vj. The amount of data
transfers between vi and vj is represented by the weight wi,j for all
ei,j and it is given in bits per second.

Fig. 1a shows an example CTG. This CTG represents the multi-
media benchmark 263-enc mp3-dec presented in [16], where the
weights of the edges in this CTG represent the amount of data
transfer between two tasks in kbits/s. In this example, we have
twelve vertices meaning that we need at least twelve tiles to
map these tasks onto since we bound our ILP formulations to
map at most one task to a tile. If one would like to map more than
one task to a tile, he/she must add a preprocessing step to deter-
mine which tasks could be mapped on the same tile based on
the tasks’ worst case execution times. Then, the selected tasks
can be merged into a single node to be mapped onto a tile.

Definition 2. A TG is a graph M(P,L), where each node pi 2 P
denotes a tile (i.e. a processing core) in the topology and each edge
denotes a physical link li,j 2 L between pi and pj.

Fig. 1b shows an example TG with twelve tiles connected in a
4 � 3 mesh fashion. As illustrated in this figure, each tile has 2D coor-
dinates in the mesh. In Fig. 1c, we give the structure of a tile. A tile
contains a router to forward data between tiles, a memory to store
program and storage data, and a processing core to process data.

Using the above definitions, the application mapping problem
can be formulated as follows:

Given a CTG and a TG that satisfy

jV j 6 jPj ð1Þ

find a one to one mapping function F:V ? P from CTG to TG with

MIN CommCost ¼
X
8ei;j2E

gf ðv iÞ;f ðv jÞ �wi;j

8<
:

9=
; ð2Þ

such that:

8v i 2 V ;9pk 2 P; f ðv iÞ ¼ pk ð3Þ
8v i – v j 2 V ; f ðv iÞ – f ðv jÞ ð4Þ

where CommCost is the total communication (i.e. the number of bits
transferred per second between tiles.) on the network and gf ðv iÞ;f ðv jÞ
is the minimal path (i.e. the minimum number of hops) between
tiles f(vi) = pk and f(vj) = pl. Minimizing CommCost is directly propor-
tional to g and our solution aims at minimizing the number of hops,
g, resulting in minimized CommCost.

In our problem formulation, we do not consider the bandwidth
constraints and assume the minimal path routing between every
communicating tasks. XY routing algorithm [17] is the commonly
accepted deterministic routing algorithm because of its simplicity
and very little hardware requirements. However, it may cause net-
work congestion if two communication paths share the same link
and this may cause latency overhead. There are several minimal
path routing algorithms exist for mesh based NoC’s [7,9,14] that
can be applied to our mapping result to eliminate congestion.
Additionally, virtual channels can be used in router ports for con-
gestion control.

3. ILP formulation

In an ILP problem, problems are formulated using a linear objec-
tive function and linear functions as constraints, whereas the solu-
tion variables are restricted to be integers. In this work, we use 0–1
ILP formulation and the 0–1 ILP is a smaller subset of the general
ILP problem in which each (solution) variable is restricted to be
either 0 or 1. In this paper, we used Xpress �MP [13], a commercial
tool, to formulate and solve our ILP problem, though its choice is
orthogonal to the focus of this paper. In our ILP formulation, we
view the chip area as a 2D grid and assign tasks to tiles within this
grid. Table 1 gives the constant terms and variables used in our for-
mulations. We relist ILP formulations presented in [11] in the fol-
lowing paragraphs to make this paper self contained.

For our formulations, we define a binary variable ai,x,y, indicat-
ing that task i is mapped to a tile in the coordinate (x,y) if ai,x,y = 1,
otherwise ai,x,y = 0. In the following formulations, Eq. (5) indicates
that every task i must be mapped to a tile with the coordinates
(x,y) and only one task can be mapped to a single tile. The number
of tasks in the CTG may be less than the number of available tiles.
In this case, there will be some tiles that have no tasks mapped on
them. Eq. (6) captures this constraint.

XXdim

x¼0

XYdim

y¼0

ai;x;y ¼ 1; 8i: ð5Þ

Xn

i¼1

ai;x;y 6 1; 8x; y: ð6Þ

As indicated in Eq. (2), in order to calculate the total communi-
cation of the architecture (i.e. CommCost), we must calculate the
minimum number of hops gf ðv iÞ;f ðv jÞ between two tasks vi and vj

mapped on the mesh. The Manhattan distance (i.e. the city block
distance) gives the minimum number of hops between two tiles.

(a) (c)(b)

Fig. 1. (a) An example CTG, (b) An example TG with the size of 4 � 3, and (c) The structure of a tile.

S. Tosun / Advances in Engineering Software 42 (2011) 868–874 869



Download English Version:

https://daneshyari.com/en/article/568091

Download Persian Version:

https://daneshyari.com/article/568091

Daneshyari.com

https://daneshyari.com/en/article/568091
https://daneshyari.com/article/568091
https://daneshyari.com

