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a b s t r a c t

The paper presents the simultaneous cost, topology and standard cross-section optimization of single-
storey industrial steel building structures. The considered structures are consisted from main portal
frames, which are mutually connected with purlins. The optimization is performed by the mixed-integer
non-linear programming approach, MINLP. The MINLP superstructure of different structure/topology and
standard cross-section alternatives has been generated and the MINLP optimization model of the struc-
ture has been developed. The defined cost objective function is subjected to the set of (in)equality con-
straints known from the structural analysis. Internal forces and deflections are calculated by the elastic
first-order analysis constraints. The dimensioning constraints of steel members are defined in accordance
with Eurocode 3. The modified outer-approximation/equality-relaxation (OA/ER) algorithm, a two-phase
MINLP strategy and a special prescreening procedure of discrete alternatives are used for the optimiza-
tion. A numerical example of the cost optimization of a single-storey industrial steel building is presented
at the end of the paper.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Structural engineers and designers are in the daily engineering
praxis required to design the cheapest possible structures with the
minimum amount of used material and technical equipment. The
use of modern optimization methods thus becomes a great oppor-
tunity in the area of structural engineering.

Single-storey industrial steel building structures are probably
the most frequently built type of structures among various skeletal
framed steel constructions. Many different optimization ap-
proaches have been proposed in the near past for the optimization
of these structures. E.g. Lee and Knapton [1] have performed a con-
strained non-linear cost optimization of steel portal framed build-
ing. O’Brien and Dixon [2] have proposed a linear programming
approach for the optimal design of pitched roof frames. Gurlement
et al. [3] have introduced a practical method for single-storey steel
structures, based on a discrete minimum weight design and Euro-
code design constraints. Saka [4] has considered an optimum de-
sign of pitched roof steel frames with haunched rafters by using
a genetic algorithm. Kamal et al. [5] have carried out a weight opti-
mization of two-hinged steel portal frames under multiple load-
ings. One of the latest researches reported in this field is the
work of Hernández et al. [6], where authors have considered min-
imum weight design of steel portal frames with software devel-
oped for structural optimization.

This paper deals with the simultaneous cost, topology and stan-
dard cross-section optimization of single-storey industrial steel
building structures. The considered building structures are con-
sisted from main portal frames, which are mutually connected
with purlins. The task of the optimization is to find the minimal
structure’s material and labour costs, the optimal topology with
the optimal number of portal frames and purlins as well as the
optimal standard cross-sections of steel members.

The optimization is performed by the mixed-integer non-linear
programming (MINLP). The MINLP is a combined discrete and con-
tinuous optimization technique. It handles with continuous and
discrete binary 0–1 variables simultaneously. While continuous
variables are defined for the continuous optimization of parame-
ters (dimensions, stresses, strains, weights, costs, etc.), discrete
variables are used to express discrete decisions (topology and stan-
dard cross-section alternatives). Since continuous and discrete
optimizations are carried out simultaneously, the MINLP approach
also finds optimal continuous parameters (e.g. structural costs),
structural topology and discrete standard sizes simultaneously.

The MINLP discrete/continuous optimization problems of such
framed building structures are in most cases comprehensive,
non-convex and highly non-linear. The optimization requires the
generation of the building’s MINLP superstructure of different
topology and standard cross-section alternatives and the develop-
ment of the MINLP optimization model. Since the objective of the
optimization is to minimize the structure’s self-manufacturing
costs, the cost objective function has been defined. It comprises
the material, fabrication and anti-corrosion protection painting
costs as well as the assembling and erection costs of the structure.
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The cost objective function is subjected to the set of equality and
inequality constraints known from the structural analysis. Internal
forces and deflections are calculated by the elastic first-order anal-
ysis constraints. The dimensioning constraints of steel members
are defined in accordance with Eurocode 3 [7] for the conditions
of both the ultimate and serviceability limit states.

The modified outer-approximation/equality-relaxation algo-
rithm is used to perform the optimization, see Kravanja and Gross-
mann [8], Kravanja et al. [9–11]. The two-phase MINLP
optimization is proposed. It starts with the topology optimization,
while the standard dimensions are temporarily relaxed into con-
tinuous parameters. When the optimal topology is found, the stan-
dard dimensions of the cross-sections are re-established and the
simultaneous discrete topology and standard dimension optimiza-
tion of the beams, columns and purlins is then continued until the
optimal solution is found. In order to reduce a high number of
structure alternatives and enable a normal solution of the MINLP,
a special prescreening procedure has been developed, which auto-
matically reduces the binary variables of alternatives into a reason-
able number. The optimization at the second phase includes only
those 0–1 variables which determine the topology and standard
dimension alternatives close to the values, obtained at the first
MINLP optimization phase.

2. MINLP model formulation

The MINLP optimization of the industrial steel building needs
the generation of the building’s MINLP superstructure, which is
composed of various topology and discrete design alternatives that
are all candidates for a feasible and optimal solution. While topol-
ogy alternatives represent different selections and interconnec-
tions of corresponding structural elements – portal frames and
purlins, discrete design alternatives include different standard
cross-sections of columns, beams and purlins. The MINLP super-
structure is modeled according to the MINLP model formulation.

It is assumed that a general non-convex and non-linear dis-
crete/continuous optimization problem can be formulated as an
MINLP problem in the form:

min z ¼ cTy þ f ðxÞ
s:t: hðxÞ ¼ 0

gðxÞ � 0
By þ Cx � b

x 2 X ¼ fx 2 Rn : xLO � x � xUPg
y 2 Y ¼ f0;1gm

ðMINLPÞ

where x is a vector of continuous variables specified in the compact
set X and y is a vector of discrete, binary 0–1 variables. Functions
f(x), h(x) and g(x) are non-linear functions involved in the objective
function z, equality and inequality constraints, respectively. All
functions f(x), h(x) and g(x) must be continuous and differentiable.

In the context of structural optimization, continuous variables x
define structural parameters (actions, dimensions, stresses, deflec-
tions, costs,. . .) and binary variables y represent the potential exis-
tence of structural elements within the defined superstructure. An
extra binary variable y is assigned to each structural element. The
element (the portal frame or purlin) is then selected to compose
the structure if its subjected binary variable takes value one
(y = 1), otherwise it is rejected (y = 0). Binary variables also define
the choice of discrete/standard cross-sections.

The economical objective function z involves fixed costs in the
term cTy, while the dimension dependant costs are included in
the function f(x). Non-linear equality and inequality constraints
h(x) = 0, g(x) 6 0 and the bounds of the continuous variables repre-
sent the rigorous system of the design, loading, resistance, stress,

deflection, etc. constraints known from the structural analysis. Log-
ical constraints that must be fulfilled for discrete decisions and
structure configurations, which are selected from within the super-
structure, are given by By + Cx 6 b. These constraints describe rela-
tions between binary variables, restore interconnection relations
between currently selected or existing structural elements (corre-
sponding y = 1) and cancel relations for currently rejected or non-
existing elements (corresponding y = 0), define continuous design
variables for each existing structural element and define the struc-
tural topology and standard cross-sections of elements. It should
be noted, that the comprehensive MINLP model formulation for
mechanical structures may be found elsewhere, see Kravanja
et al. [12].

3. Optimization model

The single-storey industrial steel building structure is consisted
from equal main portal frames, mutually connected with equal
purlins, see Fig. 1. Each the portal frame is constructed from two
columns and two beams. Purlins run continuously over the portal
frames. Columns, beams and purlins are proposed to be built up
from steel standard hot rolled European wide flange I sections
(HEA sections), see Fig. 2. The global building geometry (including
the frame span Lf, the building length LTOT, the column height HC

and the overhight f) is proposed to be fix through the optimization.
The vertical and horizontal bracing systems as well as the wall
sheeting rails are not included in this optimization.

On the basis of the mentioned MINLP model formulation, the
MINLP optimization model Single-Storey Industrial Steel Building
OPTimization (SSISBOPT) has been developed for the cost optimi-
zation of the industrial steel building structures. As an interface
for mathematical modeling and data inputs/outputs general alge-
braic modeling system (GAMS), a high level language by Brooke
et al. [13] is used.

The optimization model comprises input data, continuous and
discrete binary variables, the structure’s cost objective function,
structural analysis constraints and logical constraints. The cost
objective function is subjected to the set of (non)linear structural
analysis constraints and linear logical constraints.

Input data comprises sets for the topology and cross-section
alternatives, scalars and parameters. Defined are m, m2M, number
of purlins; n, n2N, number of portal frames; i, i2I; j, j2J; and k, k2K,
standard cross-section alternatives for columns, beams and purlins
separately.

Scalars in input data include the industrial building global
geometry: the frame span Lf, the length of the industrial building
LTOT, the height of the column HC and the overheight of the frame
beam f. The yield strength of structural steel fy, the elastic modulus
of steel E, the shear modulus of steel G, the density of steel q, the
mass of the roof gr, snow s, the vertical wind wv, the horizontal
wind wh, the partial safety factor for permanent load cg (1.35),
the partial safety factor for variable load cq (1.50), the resistance
partial safety factors cM0 (1.10) and cM1 (1.10), the price of the
structural steel Cmat, the price of the anti-corrosion and fire protec-
tion painting Cpaint, the erection price of the portal frame Cerect,frame,
the erection price of the purlin Cerect,purlin, the coefficient for calcu-
lating the fabrication costs Cfabr, etc. are defined as input data.

Parameters in input data comprise the vectors of different dis-
crete alternative constants, e.g. qAC

i , a vector of i, i2I, discrete stan-
dard cross-section area alternatives for columns; qAB

j , a vector of j,
j2J, discrete standard cross-section area alternatives for beams;
and qAP

k , a vector of k, k2K, discrete standard cross-section area
alternatives for purlins. Similarly are defined all other cross-section
constants for heights, breadths, the web and flange thickness, the
second moment of areas, the warping constants, etc.
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