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a b s t r a c t

Based on the boundary integral equations and stimulated by the work of Young et al. [J Comput Phys
2005;209:290–321], the boundary point method (BPM) is a newly developed boundary-type meshless
method enjoying the favorable features of both the method of fundamental solution (MFS) and the
boundary element method (BEM). The present paper extends the BPM to the numerical analysis of linear
elasticity. In addition to the constant moving elements, the quadratic moving elements are introduced to
improve the accuracy of the stresses near the boundaries in the post processing and to enhance the anal-
ysis for thin-wall structures. Numerical tests of the BPM are carried out by benchmark examples in the
two- and three-dimensional elasticity. Good agreement is observed between the numerical and the exact
solutions.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

For a large class of physical and engineering problems, bound-
ary-type solution methodologies are now well established as viable
alternatives to the prevailing domain-type methods such as the fi-
nite difference method, the finite element method and finite vol-
ume method, because of the computational advantages they offer
and its distinctive feature of requiring only the numerical discret-
isation of the boundary of the solution domain. In particular,
boundary-type methods have the merit of predicting accurate
and complete solutions while reducing the dimensionality of any
given problem by one and thus simplifying the effort involved in
data preparation and computer time. The boundary element meth-
od (BEM) is the most popular and efficient boundary-type solution
procedure, formulated in terms of boundary integral equations
(BIE). In the BIE the governing differential equations are converted
into integral identities applied over the boundary of the domain.
Then the boundary is discretised into small elements in order to
carry out the integration.

For elasto-static problems, the variations of displacements and
tractions can be described in terms of values at a number of nodal
points associated with each element. Shape functions of linear,

quadratic or higher order are used for interpolating between the
nodes. The integrations over the boundary are usually performed
by the Gauss quadrature technique. Details of the BEM can be
found in various publications [1,2]. However, the use of elements
in the BEM with integrations especially in three-dimensions still
puts bourdon on computing efficiency. For example, the BEM re-
quires polygonisation of the boundary surfaces in general 3D cases,
and boundary curves in general 2D cases. The regular, weakly sin-
gular, strongly singular, and hyper-singular integrals need be dealt
with over boundary segments, which is usually a cumbersome and
non-trivial task. The presentation of the boundary contour method
[3–6] is an effort to improve the efficiency by transferring surface
integrals into line integrals via Stokes’ theorem. The boundary
node method (BNM) represents a coupling between the BIE and
the moving least square approximations [7–9]. Using polynomial
or radial basis function (RBF) as basis functions, the point interpo-
lation method has been proposed to construct meshfree shape
function with Kronecker delta function properties [10,11] with
which the boundary conditions can be easily enforced and coupled
with the BIE to construct boundary-type meshfree methods [12].
Remarkable progress has been achieved in solving a wide range
of static and dynamic problems for solids and structures.

The Trefftz method is another noteworthy boundary-type
meshless method featuring conciseness and ease of performance.
The crucial structure of the Trefftz method is the use of a set of trial
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functions, singular or non-singular, which a priori satisfies the gov-
erning differential equation under consideration [13,14]. In the
boundary knot method (BKM), a set of non-singular general solu-
tions is employed as trial functions to solve Helmholtz and convec-
tion–diffusion equations [15,16]. The merits of using non-singular
trial functions such as T-complete functions [17] or general solu-
tions lie in the fact that the collocation and observation points
can be coincident and placed on the real boundary of the problem.
However, the system matrix thus formed may be ill-conditioned or
the condition number of the matrix could become large [17] so that
the scale of solvable problems would be limited.

In the method of fundamental solutions (MFS, sometimes called
also the F-Trefftz method, charge simulation method, or singularity
method), singular functions are taken as the trial functions [18–
23]. Just like the BEM, the MFS are best applicable in situations
where a fundamental solution to the partial differential equation
in question is known. In such cases, the dimensionality of the dis-
cretization is reduced. The MFS has certain advantages over the
BEM that stems mostly from the fact that the pointisation of the
boundary is needed only, which completely avoids any integral
evaluations, and makes no principal difference in coding between
the 2D and the 3D cases. Because of the singular nature of funda-
mental solutions, however, the source points must be placed out-
side the problem domain to avoid the singularity problem,
forming a fictitious non-physical boundary. The location of this
artificial boundary represents the most serious problem of the
MFS and has to be dealt with heuristically, especially for engineer-
ing problems with complicated geometry. If the offset distance is
too small, the diagonal coefficients of the system matrix will di-
verge because of the singular nature of fundamental solutions.
On the other hand, if the artificial boundary is distant from the real
boundary, the system matrices also become ill-conditioned since
the condition number of the influence matrix becomes very large.
The location of the source and observation points is vital to the
accuracy of the solution when implementing the MFS.

A distinct feature in the Trefftz type method including the BKM
and the MFS is that each of the coefficients of system matrices is
computed on only one point, or named integration-free, compared
with element-type methods in which the integration must be per-
formed over elements. This feature, which can be termed one-point
computing, greatly reduces the computing cost. Very recently, by
making use of strongly and hyper-singular fundamental solutions
of Laplace equation with an indirect formulation, Young et al. pro-
posed a modified MFS for 2D potential problems [24] in which both
the source and observation points are located on the real boundary
with a singularity removal technique commonly used in the BIE,
thus avoiding the inconvenience of using an artificial boundary
completely. The only shortcoming of the method seems to be lie
in that the equally spaced nodes have to be used along the bound-
ary since the singularity removal technique depends on the diver-
gence-free properties of the kernels [24].

Enlightened by the above-mentioned work, a novel boundary-
type meshless method—the boundary point method (BPM) is
developed recently for solving the two- and three-dimensional po-
tential problems [25]. The BPM can be looked as something be-
tween the MFS and the BEM. In the BPM, the boundary of the
problem domain is discretized by boundary nodes, each node hav-
ing a territory or support where the field variables are defined. By
making use of the properties of fundamental solutions, the coeffi-
cients of the system matrix in the BPM are computed according to
the distances between the two points, the source and observation
points. In the cases when the distances are not small, the integrals
of kernel functions are evaluated by one-point computing, just like
that carried out in the MFS, which consist of the most off-diagonal
terms of the system matrix. In the cases when the distances are not
large, the integrals of kernel functions are evaluated by Gauss

quadrature over territories. If the two points coincide, the integrals
are treated by the mature techniques available in the BEM [26–28],
which constitute the principal diagonal terms of the system ma-
trix. As the adjacent nodes describe the local features of boundary
such as position, curvature and direction, the so-called moving ele-
ments are introduced in the BPM [25] by organizing the relevant
adjacent nodes tentatively, over which the treatment of singularity
and Gauss quadrature can be carried out for evaluating the inte-
grals in the latter two cases, i.e., the coincidence or the small dis-
tances between the two points.

The current paper extends the BPM to the numerical analysis of
linear elasticity. As the field variables are assumed to be constant
over each of the territories or supports [25], the accuracy of the
field variables in the domain very close to the boundary need to
be improved. However, this can be realized by introducing tenta-
tively the quadratic moving element into the BPM in the present
work. The basic formulations of the BIE in elasticity are presented
in Section 2 as the starting point with the outline of the BPM given
briefly in Section 3. The quadratic moving elements are introduced
in Section 4. The numerical examples are tested in Section 5,
including the comparisons between one-point computing and
Gauss quadrature and some benchmark examples are presented
in the two- and three-dimensional elasticity, showing the feasibil-
ity and accuracy of the proposed method.

2. Basic formulations

Considering a linear elastic domain X surrounded by the piece-
wise smooth boundary C free of body force, the equilibrium equa-
tion is:

rij;j ¼ 0; in X; ð1Þ

where rij is the stress tensor. The corresponding boundary condi-
tions are given by:

uiðxÞ ¼ �uiðxÞ; x 2 Cu; ð2Þ
siðxÞ ¼ rijðxÞnj ¼ �siðxÞ x 2 Cr; ð3Þ

where ui are the displacements, si the tractions, �ui the prescribed
displacements on the displacement boundary Cu, �si the prescribed
tractions on the traction boundary Cr, and ni is the outward unit
that is normal to the boundary C ¼ Cr [ Cu. From the method of
weighted residuals and the constitutive relations of elasticity
[1,2], the direct formulations of integral equations can be written
as:

cðyÞdijujðyÞ ¼
Z

C
sjðxÞu�ijðx; yÞdCðxÞ �

Z
C

ujðxÞs�ijðx; yÞdCðxÞ; ð4Þ

cðyÞdijrjkðyÞ ¼
Z

C
sjðxÞu�ikjðx; yÞdCðxÞ �

Z
C

ujðxÞs�ikjðx; yÞdCðxÞ; ð5Þ

where u�ij and s�ij are the Kelvin’s displacement and the traction
fundamental solutions, u�ikj and s�ikj the derived displacement and
traction fundamental solutions, respectively. c represents the coef-
ficient of the free term of the BIE depending on where the source
point y is located. c(y) = 1 if y 2X, c(y) = 0 if y 2 X [ C, c(y) = 0.5
if y 2 C which is smooth in the neighborhood of the point y. dij is
the Kronecker symbol. With the Cauchy’s relation si = rijnj, Eq. (5)
can be written as follows:

cðyÞdijsjðyÞ ¼ nkðyÞ
Z

C
sjðxÞu�ikjðx; yÞdCðxÞ �

Z
C

ujðxÞs�ikjðx; yÞdCðxÞ
� �

:

ð6Þ

It is known that, in Eqs. (4)–(6), when y 2 C, the integrals with the
kernel u�ij are weakly singular (O(log (r�1)) for 2D or O(r�1) for 3D),
the integrals with the kernels s�ij and u�ikj are strongly singular
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