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a b s t r a c t

Finite element techniques for the simulation of electromagnetic wave propagation are, like all conven-
tional element based approaches for wave problems, limited by the ability of the polynomial basis to cap-
ture the sinusoidal nature of the solution. The Partition of Unity Method (PUM) has recently been applied
successfully, in finite and boundary element algorithms, to wave propagation. In this paper, we apply the
PUM approach to the edge finite elements in the solution of Maxwell’s equations. The electric field is
expanded in a set of plane waves, the amplitudes of which become the unknowns, allowing each element
to span a region containing multiple wavelengths. However, it is well known that, with PUM enrichment,
the burden of computation shifts from the solver to the evaluation of oscillatory integrals during matrix
assembly. A full electromagnetic scattering problem is not simulated or solved in this paper. This paper is
an addition to the work of Ledger and concentrates on efficient methods of evaluating the oscillatory inte-
grals that arise. A semi-analytical scheme of the Filon character is presented.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

The problem of computing the electromagnetic field scattered
by a body when subjected to an incident wave has practical impor-
tance in radar cross section prediction. There are several numerical
methods that have been proposed for the simulation of these fields,
for example the discontinuous Galerkin method [1] is attracting
much attention. Node based finite elements impose a continuity
of all components of the field across inter-element boundaries
which is not a necessary property of the field. Using such node
based finite elements may lead to the occurrence of spurious
modes in the numerical solutions. Edge elements, first introduced
by Nédélec [2–4], assign degrees of freedom to the edges rather
than to the nodes of the elements and have the property that they
ensure the continuity of the tangential component of the field
across inter-element boundaries while allowing for jumps in the
normal component of the field. Edge elements are free of spurious
modes.

For the lowest order edge element, the tangential component of
the solution is constant on each edge. Consequently the accuracy
achieved by this element is low, leading to a requirement for very
dense meshes. Compatible, arbitrary order, quadrilateral and trian-
gular edge elements have been developed by Demkowicz and
Rachowicz [5] and Ainsworth and Coyle [6]; the latter have been

shown to have better conditioning properties and thus will be used
here.

The partition of unity method (PUM) developed by Melenk and
Babuška [7,8] is a general numerical approximation technique in
which the approximation space is enriched by the inclusion of a
set of analytical functions known to form a basis for the solution.
The approach has been implemented in a finite element scheme
under the heading of the Partition of Unity Finite Element Method
(PUFEM). The motivation for the use of these new elements is to
escape the limitations of conventional finite element procedures,
which for wave problems impose an upper bound on nodal spacing
of around 10% of the wavelength under consideration. This has led
to a rule of thumb being adopted requiring a minimum of around
10 degrees of freedom per wavelength to be used in conventional
finite element models. In PUFEM the field is expanded in a discrete
series of plane waves, each propagating at a specified angle. These
angles can be uniformly distributed or may be carefully chosen.
This expansion allows each element to span many wavelengths.

For the simulation of wave phenomena, the PUFEM has been
applied to a range of Helmholtz wave diffraction problems in the
frequency domain. Laghrouche et al. [9] showed that (when com-
pared with conventional fine finite element meshes) the number
of variables could be reduced by up to 96%. Mayer and Mandel
[10] presented a similar method with the name Finite Ray Element
Method. Farhat et al. [11–13] have proposed the Discontinuous
Enrichment Method in which the standard finite element polyno-
mial field is enriched by plane waves. Ortiz and Sanchez [14] have
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developed a three-node wave finite element based on the partition
of unity model. Strouboulis et al. [15] apply the approach on Carte-
sian meshes in the generalised finite element method and analyse
the convergence properties.

Plane waves were used in the approximation of integral equa-
tions in electromagnetic scattering by de La Bourdonnaye [16] un-
der the name of Microlocal Discretisation. Further experiences in
implementing the PUM in boundary element approximations
(PUBEM) are reported by Perrey-Debain et al. [17–19]. Trevelyan
et al. [20] presented a successful adaptive PUBEM scheme in which
wave directions are added in response to an error indicator. A par-
ticularly effective strategy for integral equation approximations
can be found in the enrichment of the approximation space using
a single plane wave, i.e. the incident wave [21–23]. This offers
the benefit of a solution complexity independent of the wave num-
ber, enabling the analysis of scatterers of size 106k, but is limited to
scattering by convex obstacles that are large with respect to the
wavelength. Electromagnetic scattering using plane wave enrich-
ment of Ainsworth and Coyle [6] edge elements has previously
been presented by Ledger et al. [24,25]. This paper is an addition
to that work.

Most authors introducing the PUM for the solution of wave
problems have reported ill-conditioning problems with these
methods. It is noted that these problems can be ameliorated if
the system is not over-defined, i.e. if the number of degrees of free-
dom is not too great [18]. A detailed study of the conditioning of
PUFEM approximations using edge elements is a subject for future
research. In this paper we focus on efficient methods of evaluating
the oscillatory integrals that arise in the matrix entries.

The reduction in the number of active variables by using such a
plane wave basis comes at the price of some computationally
intensive numerical integration over the elements. Since a single
element might contain many wavelengths, the integrands to be
evaluated in order to determine terms in the governing matrices
become highly oscillatory. It is well known that polynomial repre-
sentations of trigonometrical functions are not accurate and are
expensive to compute. Therefore, conventional Gauss–Legendre
integration requires a very large number of integration points.
Computational integration of oscillatory functions is currently an
active area of research. Readers are referred to the semi-analytical
integration rules of Bettess et al. [26], for example, and other works
by Iserles et al. [27], Huybrechs and Vandewalle [28,29], Langdon
and Chandler-Wilde [30], Honnor and Trevelyan [31].

2. Mathematical model of electromagnetics

Electromagnetic phenomena are governed by Maxwell’s equa-
tions, which for harmonically oscillating functions with a single
frequency, x, lead to the vector wave equation. The vector wave
equation can be expressed either in terms of electric field intensity,
E
�

, or in terms of magnetic field intensity, H
�

. The vector wave equa-
tion for the electric field is [32,33]

r� ðl�1r� E
�
Þ � x2e E

�
¼ �ix J

�
ð1Þ

where l is the permeability, e is the permittivity, and J
�

is the electric
current density. The vector wave equation for the magnetic field is
[32,33]

r� ðe�1r� H
�
Þ � x2l H

�
¼ r� ðe�1 J

�
Þ ð2Þ

The vector wave equations (1) or (2), is used in conjunction with the
continuity equation [32,33]

r � J
�
¼ �ixq ð3Þ

where q is the electric charge density. In this work we assume that
the conductivity of the medium is negligible and the permittivity, e,
and permeability, l, are unity. This does not lead to any loss in gen-
erality since for homogeneous media they are scalar constants. For
inhomogeneous media they become functions of position.

3. Geometry representation and basis functions

The edge element basis cannot be used to represent the geom-
etry. Instead, traditional nodal methods must be used. Where the
order of approximation of the field variable is increased and the
mesh kept constant, the use of a linear sub-parametric discretisa-
tion can result in inaccurate solutions. In this work we use the lin-
ear blending function approach [34]. There is no requirement for
additional nodes on boundary edges of the element and the curve
of the boundary edges exactly follows the true curve of the bound-
ary. In this section we describe the hierarchic compatible arbitrary
order quadrilateral and triangular edge elements of Ainsworth and
Coyle [6].

3.1. Quadrilateral edge element

The master quadrilateral element is shown in Fig. 1. For an ele-
ment of order p, the variation of the electric field over this element
is given in the interpolated form

U
�
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where U
�

denotes either E
�

for transverse electric polarisation or H
�

for
transverse magnetic polarisation, /

�
are the vector shape functions

and u
�

are the unknowns. The basis functions associated with the
element edges, /i

j, and interior basis functions, /
In1
j;k and /

In2
j;k , are

piecewise polynomials constructed from shape functions, edge vec-
tors, Legendre polynomials and integrated Legendre polynomials as
defined in [6].

3.2. Triangular edge element

The master triangular element is shown in Fig. 2. For an element
of order p, the variation of the electric field over this element is
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Fig. 1. The quadrilateral master element.
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