
Sparsity-promoting polynomial response surface: A new surrogate
model for response prediction

Caibin Fan, Yunbao Huang ⇑, Qifu Wang
School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China

a r t i c l e i n f o

Article history:
Received 4 May 2014
Received in revised form 20 July 2014
Accepted 10 August 2014

Keywords:
Sparsity-promoting
Legendre polynomials
Overfitting
Surrogate model
Response prediction

a b s t r a c t

Computation-intensive analyses/simulations are becoming increasingly common in engineering design
problems. To improve the computation efficiency, surrogate models are used to replace expensive simula-
tions of engineering problems. This paper proposes a new high-fidelity surrogate modeling approach
which is called the Sparsity-promoting Polynomial Response Surface (SPPRS). In the SPPRS model, a series
of Legendre polynomials is selected as basis functions, and its number is compatible with the sample size so
as to enhance the expression ability for complex functional relationships. The coefficients associated with
basis functions are estimated using a ‘‘sparsity-promoting’’ regression approach which is an ensemble of
two techniques: least squares and ‘1-norm regularization. As a result, only these basis functions relevant
to explain the function relationship are picked out, and that dedicates to ease the problem of overfitting for
training points. With the sparsity-promoting regression approach, such a surrogate model intends to cap-
ture both the global trend of the functional variation and a reasonable local accuracy in the neighborhood of
training points. Additionally, Latin hypercube design (LHD) is proved conducive to improving the predic-
tive capability of our model. The SPPRS is applied to seven benchmark test functions and a complex engi-
neering problem. The results illustrate the promising benefits of this novel surrogate modeling technique.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Despite the tremendous promotion in computer processing
power, optimization-aided design in real-world problems is usually
time consuming and computationally expensive in the evaluation of
objective functions [1]. Just taking a single crash testing simulation
for example, it is reported that it requires several hours even when
performed in a parallel processing environment [2]. Other engineer-
ing problems, such as analyses in aircraft multidisciplinary design
and optimization (MDO) and the design of structures or a structural
component in civil engineering, also require large amounts of
computation time. To meet the challenge of increasing model
complexity, surrogate models, also called ‘‘metamodels’’, have been
widely used to replace the expensive simulation models [3].

A wide variety of surrogate models have been developed in the
last few decades. Among these models described in relevant litera-
ture, Polynomial Response Surface (PRS) [4] is commonly used and
relatively easy to be established. The coefficients of PRS are usually
determined according to a least squares procedure. Kriging was
developed for modeling spatial data collected in the geo-sciences

[5], and then Sacks et al. [6] utilized Kriging to model data from
computer experiments. The core idea of Kriging is combining a glo-
bal regression model and a stochastic model into one interpolation
model. Radial Basis Functions (RBF) [7,8] are an interpolating
method on all data points. The response of RBF is a linear sum of
basis functions with weights which can be estimated by solving a
system of linear equations. In addition, there are also other types
of surrogate models, including Multivariate Adaptive Regression
Splines (MARS) [9], Support Vector Regression (SVR) [10,11], Artifi-
cial Neural Network (ANN) [12], etc. In general, PRS is unsuitable for
the non-linear, multi-modal, multi-dimensional design landscapes
we often encounter in engineering unless the ranges of the vari-
ables being considered are reduced, as in trust-region methods
[13]. Compared with PRS, RBF provides more accurate results for
more non-linear and high-dimensional objective functions, but it
takes more computational expense [14]. Kriging has a better perfor-
mance on non-linear problems than other models due to its excel-
lent ability to interpolate training data and filter noisy data.
However, Kriging is difficult to be established and used because a
global optimization process is applied to identify the maximum
likelihood estimators [15]. SVR was used and tested in [10], which
showed that SVR achieved a higher accuracy over all other meta-
modeling techniques including Kriging, PRS, MARS, and RBF on a
large number of test problems. The fundamental reasons why SVR
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surpasses the others, however, are not clear. In summary, each sur-
rogate model has its own superiorities and defects; therefore, these
models present widely different levels of numerical fidelity for var-
ious types of problems. More comprehensive reviews of different
surrogate models can be found in [16–18].

Because of limitations existing in these models mentioned
above, some literature proposed the enhanced versions, for exam-
ple, Moving Least Squares (MLS) (also called Locally Weighted
Regression) [19,20], Blind Kriging (BK) [21,22], Extended Radial
Basis Functions (ERBF) [23], and so on. To make full use of the
resources available for surrogate modeling and eliminate the neg-
ative impact brought by poorly fitted models, several kinds of
hybrid surrogates were developed in [3,24,25]. Although many
efforts have been made to ameliorate the performances of pre-
existing models, there are still some deficiencies in these models
as following: (i) when constructing a PRS or a Kriging model, the
highest order of polynomials is hard to determine without priori
information on simulation model, and an inappropriate choice
may result in overfitting for training data [26]; (ii) in the PRS
model, the coefficients of polynomials are determined by an ordin-
ary least squares estimate which has low bias but large variance
[27]; and (iii) some parameters, such as the correlation parameters
of Kriging, the parameter c in RBF and the kernel’s parameters of
SVR, are generally obtained by a time-consuming procedure based
on cross-validation errors [28].

Motivated by the previous research, this paper provides a novel
approach to develop a new surrogate model, which is called the
Sparsity-promoting Polynomial Response Surface (SPPRS). In this
model, a series of Legendre polynomials is selected as basis
functions, and its number is compatible with the sample size.
The coefficients of basis functions are estimated using a ‘‘spar-
sity-promoting’’ regression approach which is a combination of
the least squares procedure and the ‘1-norm regularization
method. Potential benefits of this surrogate model include:

� The model has a more powerful ability in distilling correct
trends from data set due to its adaptive basis functions.
� With the ‘‘sparsity-promoting’’ regression approach, this model

only picks out these basis functions which are relevant to char-
acterize the function relationship, and that contributes to easing
the problem of overfitting for training points.
� Combined the least squares procedure with the ‘1-norm regu-

larization, both the global trend of the actual response and a
reasonable local accuracy in the neighborhood of training points
are captured.
� All parameters involved in the model are automatically

determined.

The rest of the paper is organized as follows. In the next section,
we present a brief review of Polynomial Response Surface (PRS).
Section 3 gives the formulation of this new surrogate model. Then,
we discuss the test problems, numerical experiments, and the
results supporting our viewpoints. Finally, the paper comes to an
end with the summary of some significant conclusions.

2. Related work

The Sparsity-promoting Polynomial Response Surface (SPPRS) is
an extension of PRS. In this section, we give a brief review of PRS.
Similar with RBF, the predicted response of PRS models is a sum of
basis functions with their coefficients. A PRS model with m vari-
ables can be written as:

ŷðxÞ ¼
XNb

i¼1

ciwiðxÞ ð1Þ

and the matrix form is

ŷðxÞ ¼ Wc

where x = [x1 . . . xm]T is a design point, fcigi¼1;2;...;Nb
are coefficients,

fwiðxÞgi¼1;2;...;Nb
are basis functions, Nb is the number of basis

functions, c ¼ ½c1 . . . cNb
�T is the coefficient vector, and W ¼

½w1 . . . wNb
� is the set of basis functions. Because wi(x) is a polyno-

mial, such as general polynomial, Chebyshev polynomial, or Legen-
dre polynomial, then wi(x) can be determined by the corresponding
definition of the polynomial with an exponent vector. The order of
each univariate polynomial is assigned by the exponent vector and
wi(x) is the tensor product of these univariate polynomials with
respect to each variable. Therefore, wi(x) can be defined as

wiðxÞ ¼ Pðx;gÞ ¼
Ym
j¼1

pj xj;g
ðiÞ
j

� �
; i ¼ 1; . . . ;Nb ð2Þ

where gðiÞ ¼ gðiÞ1 . . .gðiÞm

h iT
is the exponent vector of wi(x), P(x,g) is a

form of the polynomials, and pj xj;gðiÞj

� �
is the univariate polynomial

with respect to xj. For example, if P(x,g) is a general polynomial and
the exponent vector is [0152]T, then wiðxÞ ¼ x0

1x1
2x5

3x2
4. Typically, a

second-order polynomial response surface model is expressed as

ŷsecðxÞ ¼ c0 þ
Xm

p¼1

cpxp þ
Xm

p¼1

Xm

q¼1

cpqxpxq

Given a set of training points xðkÞ 2 Rm; k ¼ 1;2; . . . ;ns, and the
corresponding actual response y ¼ ½yð1Þ yð2Þ . . . yðnsÞ�T , then the
so-called ‘‘design matrix’’ can be defined as:

U ¼

w1ðxð1ÞÞ � � � wNb
ðxð1ÞÞ

..

. . .
. ..

.

w1ðxðnsÞÞ � � � wNb
ðxðnsÞÞ

2
664

3
775 ð3Þ

The coefficients associated with basis functions can be obtained by
minimizing the sum of the squared residuals, i.e.,

ĉ ¼ arg min
c
ky �Uck2 ð4Þ

We can easily get the answer to Eq. (4) using the least squares
method and the answer is ĉ ¼ Uyy. Here, U� is the Moore–Penrose
pseudo-inverse of U.

Generally, PRS is more suitable to capture the global trend of
the functional variation but falls short of obtaining local accuracy
in the close neighborhood of training points [25]. Although a
high-order PRS model can follow the training points so closely such
that it captures local accuracy around the training points, it is not
proper to capture the global trend due to the problem of overfitting
for training points. Fortunately, the ‘‘sparsity-promoting’’ regres-
sion approach, which brings in a ‘1-norm penalty based on the
least squares estimate, is reported to efficiently avoid the problem
of overfitting [29]. This approach is based on the well-known
‘‘Lasso’’ and is first developed by [27]. By utilizing the regression
approach, it is possible for high-order PRS models to obtain a rea-
sonable local accuracy as well as the global trend.

3. Sparsity-promoting polynomial response surface (SPPRS)

Compared with PRS, SPPRS has the same form as PRS, that is, the
predicted response of SPPRS is also the sum of the polynomials
with their coefficients. However, there are several remarkable dif-
ferences between PRS and SPPRS.
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