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a b s t r a c t

Verification of the quantities of interest computed with the finite element method (FEM) requires an
upper bound on the strain energy, which is half of the energy norm of displacement solutions. Recently,
a modified finite element method with strain smoothing, the node-based smoothed finite element
method (NS-FEM), has been proposed to solve solid mechanics problems. It has been found in some cases
that the energy norm formed by the smoothed strain of NS-FEM solutions bounds the energy norm of
exact displacements from above. We analyze the bounding property of this method, give three kind of
energy norms of solutions computed by FEM and NS-FEM, and extend them to the computation of an
upper bound and a lower bound on the linear functional of displacements. By examining the bounding
property of NS-FEM with different energy norms using some linear elastic problems, the advantages of
NS-FEM over the traditional error estimate based methods is observed.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

One problem with the FEM is the verification of the finite
element solutions; this leads to the development of error bound
methods for providing the evaluations of the global quality of finite
element analyses [1–6]. In engineering design, verification of the
computation of the quantities of interest plays an important role
in improving the structural design for safety, such as the displace-
ments at a point, the stresses in a local area and the stress intensity
factors at crack tips. Some verification methods have been pro-
posed for computing upper and lower bounds on quantities of
interest that are the functions of displacements [7–10], and a key
ingredient of these methods is the computation of global upper
and lower bounds on the total strain energy.

It is known that finite element approximations based on the po-
tential energy principle and the complementary energy principle
produce a lower bound and an upper bound on the total strain en-
ergy, respectively [11]. The former is referred to as the displace-
ment method, the latter the equilibrium method, which is not
commonly used in the commercial softwares for the difficulties
arising in handling the boundary conditions [11–14]. In recent
years, the methods for the computation of guaranteed upper bound
on the energy norm of the exact error in the finite element solu-
tions have been developed [15–20], which provided an alternative

approach for finding an upper bound on the strain energy by solv-
ing independent subproblems based on elements or patches. In
these methods, boundary loads on element edges are needed to
construct elemental independent subproblems for solving the
equilibrium stresses, or the boundary loads on element edges are
waived in constructing the patch based independent subproblems
to solve the equilibrium stresses, that is the so called flux-free
methods.

Recently, a modified finite element method with strain smooth-
ing, the node-based smoothed finite element method (NS-FEM),
has been proposed to solve solid mechanics problems. It has been
found that the strain energy computed by NS-FEM bounds the ex-
act strain energy from above in the computational experiments
[21–26]. This method was first proposed to develop a stabilized no-
dal integration scheme for the Galerkin mesh-free method by
introducing a strain smoothing stabilization to compute nodal
strains by a divergence counterpart of a strain spatial averaging
[27].

In this study we analyze the bounding properties of the NS-
FEM, and give some inequalities for comparing different energy
norms of displacements computed by the FEM and the NS-FEM.
We also extend this method to compute the upper and lower
bounds on the functions of displacements, and all of the examples
are specifically chosen, such as tension, bending problems with dif-
ferent boundary conditions, and the problem with stress concen-
tration, to show the performance of the method.
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This paper is organized as follows, in Section 2 the problem
statement and definitions are introduced. In Section 3 the NS-
FEM and some properties are briefly described thereof. In Section 4
the upper and lower bounds on the linear functionals of solutions
are derived, and some lemmas and remarks to these bounds are gi-
ven. In Section 5 some numerical experiments are reported and
commented on. Finally some conclusions are drawn in the last
section.

2. Problem statement and definitions

For simplifying the expression of the method in this paper, we
only consider the equations of two dimensional linear elasticity.
Let us consider a bounded elastic body X � R2, the boundary of
X is assumed piecewise smooth, and composed of Dirichlet portion
CD and Neumann portion CN , i.e. @X ¼ CD [ CN . The strong form of

the problem reads: find u in V ¼ fv 2 ðH1ðXÞÞ2jv ¼ 0 on CDg,
such that

�DrðuÞ ¼ f in X;

subject to NrðuÞ ¼ t on CN , where H1ðXÞ denotes the usual Sobolev
space, uD the displacement on CD, and

D ¼
@
@x1

0 @
@x2

0 @
@x2

@
@x1

" #
;

is the differential operator matrix, f the load, t the prescribed
boundary traction. Stress rðuÞ ¼ r11;r22; s12f gT is related to strain
eðuÞ ¼ DT u ¼ e11; e22;2c12f gT by the material law, rðuÞ ¼ EeðuÞ, in
which E is the matrix of elastic moduli,

E ¼
kþ 2l k 0

k kþ 2l 0
0 0 l

264
375;

where k and l are Lame’s constants, l ¼ E
2ð1þmÞ, and k ¼ Em

ð1þmÞð1�2mÞ for
plane strain problem, k ¼ Em

1�m2 for plane stress problem, here E and m
are Young’s elastic modulus and Poisson’s ratio, respectively. N is
the matrix constructed with n1 and n2 that are the components of
the unit external normal vector n on CN ,

N ¼
n1 0 n2

0 n2 n1

� �
:

The weak form of the above equation reads: find u in V such
thatZ

X
eTðuÞEeðvÞdX ¼ ‘ðvÞ 8v 2V;

in which ‘ðvÞ ¼
R

X f Tv dXþ
R

CN
tTv dC. The energy norm associated

with the bilinear form
R

X eTð�ÞEeð�ÞdX is defined as

kvk2 ¼
Z

X
eTðvÞEeðvÞdX:

In order to obtain an approximate solution of the weak problem
(2), a finite-dimensional counterpart of all these variational forms
given above can be built using the Galerkin FEM. We denote
Vh �V the finite element spaces of continuous functions that are
piecewise polynomials of degree r P 1. The corresponding finite
element solution in Vh is denoted by uh and satisfies the equation:Z

X
eTðuhÞEeðvÞdX ¼ ‘ðvÞ 8v 2Vh: ð1Þ

Now let us consider the output, which is a linear functional of

the solution u defined as ‘OðuÞ, i.e. ‘O : ðH1ðXÞÞ2 # R. Similar to
‘ðuÞ; ‘OðuÞ should has the form as ‘OðvÞ ¼

R
CO

pTv dC. Since the

output is used in the right hand side of the dual problem defined
as follows, it is required that the outputs depend explicitly on
the solution u. In order to derive upper and lower bounds on the
output ‘OðuÞ, we introduce the following adjoint or dual problem:
find uD 2V such thatZ

X
eTðvÞEeðuDÞdX ¼ ‘OðvÞ 8v 2V; ð2Þ

and the corresponding finite element approximation, uD
h 2Vh �V,

such thatZ
X
eTðvÞEeðuD

h ÞdX ¼ ‘OðvÞ 8v 2Vh: ð3Þ

In this paper, we use the simplest two dimensional elements, the
linear triangular elements, to implement the above primal and dual
problems.

3. The NS-FEM

Let us partition the computational domain X into smoothing
subdomains �X ¼ �X1 [ �X2 [ . . . [ �XN with Xi \Xj ¼ ; if i – j, where
N is the number of finite element nodes (including the nodes on
CD) located in the entire computational domain, and for every node
k ¼ 1; . . . ;N, the smoothing domain Xk is obtained by connecting
sequentially the mid-edge point to the centroid of the surrounding
triangles of the node as shown in Fig. 1.

Given any strain field e, the smoothed strain field ê on each
smoothing domain Xk is obtained by a nodal smoothing operation
as

êk ¼
Z

Xk

xkðx� xkÞ edX;

where xkðxÞ is a diagonal matrix of the smoothing function xkðxÞ
that is positive and normalized to unity:Z

Xk

xkðxÞdX � 1:

The smoothed strain êk is a constant over the smoothing domain Xk.
For two-dimensional elasticity problems the diagonal matrix can be
chosen to be xkðxÞ ¼ diagfxkðxÞ; xkðxÞ; xkðxÞg. For simplicity the
smoothing function xkðxÞ is taken as

xkðx� xkÞ ¼
1=Ak; if x 2 Xk;

0; otherwise;

�
where Ak ¼

R
Xk

dX is the area of the smoothing domain Xk. There-
fore, the smoothed strain in the smoothing domain Xk will be

Fig. 1. The finite element mesh and the smoothing domain Xk .
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